

ASX ANNOUNCEMENT

2nd Oct 2025

Study doubles value of Kookynie Gold Project.

Carnavale Resources Ltd ("Carnavale", "CAV") is pleased to advise the outcome of its updated Scoping Study (Study). The Study presents an open pit mine development at Swiftsure and Tiptoe with an underground mine to exploit the Swiftsure deposit at depth within the Kookynie Gold Project 60km south of Leonora, Western Australia.

Scoping Study Highlights

The updated Study highlights robust financials, when compared to the initial Scoping Study published 13 June 2024, with a competitive cost profile utilising conservative mining parameters and current cost assumptions.

- Strong economic case to develop the Kookynie Gold Project as contract mine, toll treat operation.
- Undiscounted free cashflow of approximately A\$237m 126% increase
- Net Present Value (pre-tax NPV8) of approx. **A\$188m** with an **IRR of 165%**, a **106% increase**.
- Initial production target (inc. mine dilution) of approx. 970kt @ 3.1g/t for 93koz Au recovered. (inc. bonanza zone of 60 kt @ 28.3g/t Au for 55koz) 58% increase*.
- Total pre-production Capital of approximately **\$3m** with maximum drawdown in the order of **\$21m** in month 9 of operations.
- Initial mine life of **5 years** with payback of Capital in **month 14** of operations.
- **84%** of the mineral resources extracted during the payback period classified as Indicated from the open pit.
- Scoping Study total operating cost (excluding Capex) approximately A\$2,466 oz recovered.
- 50% of production from the Open pits, with an initial 305kt @ 4.32g/t and 42koz coming from the Swiftsure pit. (further details on page 18 of Cube Study).

The Kookynie Project is located within trucking distance to many operating gold processing plants in the Eastern Goldfields. Carnavale understands that there are many ways to monetize the Kookynie Project and has evaluated the economics based on a contract operator, toll treatment operation for simplicity. Project value has been assessed using a gold price of A\$5,500.

CEO Humphrey Hale commented:

Carnavale is delighted with the results of the updated Scoping Study, the Project valuation has doubled with the free cashflow increasing by 126%. This is attributable to 58% increase in the production target and a significant increase in the gold price over the past 12 months. Carnavale is pushing forward to complete a Feasibility Study and evaluate options to bring the Kookynie Gold Project into production.

The mining lease has been applied for with grant subject to finalising a mining heritage agreement with the Nyalpa Pirniku traditional owners. This process is well underway, and it is expected that the mining lease will be granted during the Feasibility Study work.

*MRE Reported at a 0.8g/t Au cutoff grade within Open pit shell and 1.5g/t Au cut off for underground. Refer to Table 1 for the MRE reported by classification. These Resources are used to create the Production target within the Scoping Study.

Important information – Cautionary Statement – Scoping Study

The Scoping Study ("Study") referred to in this announcement has been undertaken to determine the viability of open pit and underground mining at Carnavale Resource's ("Carnavale", "CAV") Kookynie Gold Project ("Project") in Western Australia with processing undertaken at a third-party toll treatment processing plant.

Carnavale engaged independent consultants, Cube Consulting Pty Ltd ("Cube") of West Perth to provide a JORC 2012 compliant evaluation of the economic mining scenarios including open pit and underground mining to a Scoping Study standard. The Study is a preliminary technical and economic assessment of the potential viability of the Project. It is based on low level technical and economic assessments +/-35% accuracy that are not sufficient to support the estimation of ore reserves. Infill drilling, further exploration and evaluation work and appropriate studies are required before Carnavale will be in a position to provide assurance of an economic development case at this stage or to provide certainty that the conclusions of the Study will be realized.

The study includes existing JORC 2012 Indicated and Inferred resources defined within the Project with a production target comprising 70% Indicated and 30% Inferred resources over the life of the mine. Investors are cautioned that there is a low level of geological confidence in the Inferred resources and there is no certainty that further drilling will result in the determination of Measured or Indicated resources, or that the production target will be realized. 84% of the mineral resources scheduled for extraction during the 14-month payback period are classified as Indicated. The Inferred Mineral Resource is not the determining factor in determining the viability of the Project.

The Study is based upon the material assumptions outlined in this announcement, including assumptions about the availability of funding. Investors should note that there is no certainty that Carnavale will be able to raise the required amount of funding when needed. While Carnavale considers all the material assumptions to be based on reasonable grounds, there is no certainty that they will prove to be correct or that the range of outcomes indicated in the study will be achieved. To achieve the outcomes presented in the preferred mine plan, it is estimated that initial capital of A\$3m will be required to establish such things as workshops and a maximum capital requirement of A\$21m will be required before the project goes cash positive as the pit is developed.

There is no certainty that the Company will be able to raise that amount of funding when needed. It is also possible that such funding may only be available on terms that may be dilutive to or otherwise affect the value of the Company's shares. It is also possible that the Company could pursue other value realization strategies such as sale partial sale or joint venture of the project. If it does, this could materially reduce the Company's proportionate ownership of the Project.

Notwithstanding the many components of this study, such as pit shell design, capital costs, mining costs, processing costs and other amounts are more accurate than +/- 35%, Carnavale has concluded that on a reasonable basis for providing the forward looking statements included in this announcement and believes it has a reasonable basis to expect it will be able to complete the development of the Project as outlined in the Study. This announcement has been prepared in compliance with the JORC code 2012 Edition (JORC 2012) and the ASX Listing Rules. All material assumptions on which the forecast financial information has been provided in this announcement are outlined in the attached JORC 2012 table disclosures. Given the uncertainties involved as listed above, investors should not make any investments decisions based solely on the results of the Study.

Introduction

Carnavale is pleased to announce the results of the updated Scoping Study for the Swiftsure and Tiptoe deposits within the Kookynie Project in Western Australia, 60km south of Leonora.

Carnavale updated the Scoping Study to understand the potential economics of the Kookynie Gold Project against the most recent mineral resource estimate (MRE), published on the ASX 17th July 2025 "Significant increase in resources and material gains in Indicated category enhance potential for new Scoping Study.", revised cost inputs and increased gold pricing to determine the best mining methods to extract the ore.

Carnavale discovered bonanza gold mineralisation in aircore at the Kookynie Gold Project in July 2021. Since then the Company has expanded the resources with RC and diamond drilling to establish a significant economic deposit. The latest MRE for the Kookynie Gold Project includes the Swiftsure and Tiptoe deposits and does not include other prospects within the Project area such as Valiant, McTavish North or Champion South.

Whilst drilling to date is sufficient to establish a significant mineral resource that has the potential to support economic mine development, exploration upside remains strong at the Project as mineralisation remains open at depth at Swiftsure and Tiptoe with strike potential at exploration targets Valiant, McTavish North and Champion South. These additional exploration targets have the potential to add valuable ounces to the Project in the future.

The Kookynie Gold Project includes 4 granted tenements (E40/355, P40/1480, P40/1380, and P40/1381). Carnavale (80%) has entered into a joint venture with Western Resources Pty Ltd (20%) on tenements E40/355, P40/1380 and. P40/1381. Western Resources Pty Ltd is free carried until completion of a Bankable Feasibility Study. The Swiftsure deposit, which comprises the MRE is located on E40/355 (CAV 80%). Carnavale owns 100% of P40/1480. CAV, in joint venture with Western Resources, has applied for a mining license M40/362 and associated miscellaneous licence to develop the project.

Mineral Resource Estimate

CAV published the most recent MRE in July 2025 that represents the resources that have been used to develop the production target within the updated Scoping Study. The Study outcome presented includes two open pits with a cut-off grade of 0.6g/t and an underground mining scenario with a cut-off grade of 1.5g/t. A lower cut off grade has been used to estimate production from the Open pits when compared to the MRE as the increase in gold price has reduced the calculated cutoff grade from 0.8 g/t to 0.6g/t. A summary of the Resource is tabulated in Table 1 and in detail in the section **Mineral Resource Estimate Tables for Kookynie Gold Project**.

Kookynioe Gold Project MRE - including the Swiftsure Deposit and Tiptoe deposit (CoG 0.8g/t Open Pit 1.5g/t UG)			
, , ,	Kt	Au g/t	Au K oz
Indicated	426	5.6	77
Inferred	416	3.0	40
Total (Indicated + Inferred)	842	4.3	117

Table 1, MRE for the Swiftsure and Tiptoe deposit (further details in Appendix 1)

The shallow high-grade nature of the mineralisation at the Swiftsure deposit lends itself to a number of mining development scenarios with early access to ore. The Kookynie Gold Project is expected to be developed by two open pits with underground access within the Swiftsure pit to extract deeper underground ore. The deposit is characterized by a 60kt zone of bonanza grades averaging 28.3g/t Au containing 55koz within steeply plunging shoots.

Scoping Study Highlights

Carnavale engaged independent consultants, Cube Consulting Pty Ltd ("Cube") of West Perth to provide an update to the original Scoping Study and evaluate the economic mining scenarios to including open pits and an underground mine to a Scoping Study standard.

- Payback of all pre-production Capital in 14 months. The mine plan for the first 14 months contains 84% Indicated JORC Resources from the open pit.
- Initial mine Production Target of approximately **93koz** @ **3.1g/t** (**including 55koz** @ **28.3g/t**) to be mined over an initial 61 month mine life from open pits and underground.
- Revenue of approximately **A\$501m.**
- Free cashflow after all Capital and before tax of A\$237m.
- Pre-Tax NPV⁸ of approximately **A\$188m** and IRR of 165% at a gold price of A\$5,500.
- Open pit and underground optimisations completed at A\$5,000/oz with financials reported at A\$5,500/oz. Other models have been produced at varying gold pricing which is tabulated within the text.
- Upside includes exploration opportunities to expand known mineralisation outside of the MRE at Valiant, McTavish North and Champion South as well as other targets within the tenement package.

Carnavale has presented an open pit and underground development that maximises NPV, pays back Capital quickly with minimum gaps in gold production.

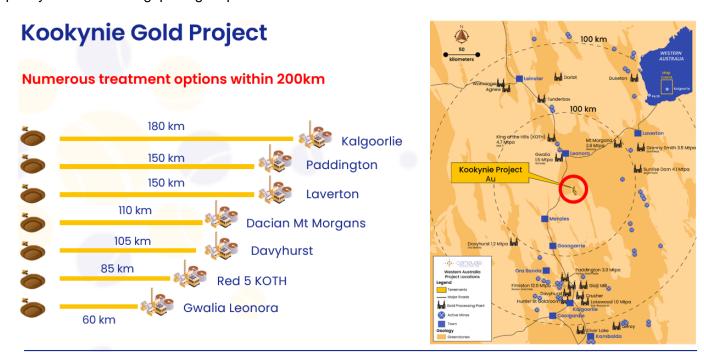


Figure 1, Plan of processing plants and operating gold mines within trucking distance

The Scoping Study included:

- Establishment of the mining economics to Scoping Study accuracy of +/-35% at the Swiftsure deposit.
- Evaluation of Open pit and Underground development.
- The Project was evaluated on the basis of contract mining with third party toll treatment.
- Costs include provision for road transport of 100km and toll treatment at a third-party processing plant.
- Government Royalties of 2.5% to be deducted from revenue.

Future Project upside

- Swiftsure and Tiptoe mineralisation is open at depth and along strike. Depth extensions to the proposed mine would add mine life and ounces.
- The optimization of the boundary between the bottom of the Swiftsure pit and the commencement of underground mining has upside potential to reduce the average cost per ounce.
- McTavish North, Valiant and Champion South have the potential to develop into additional resources as well as new discoveries along strike that have the potential to add additional shallow, high-grade ounces to the potential mine life.
- Initial Metallurgical testwork on oxide and fresh rock indicated recoveries of between 97% to 99% could be achieved which would add upside to the project value, noting that 97% assumed recoveries have been used in the Study. Further, more detailed testwork has been commissioned to support the initial testwork data.
- Improvement of geotechnical parameters to reduce the strip ratio and rationalization of stopes to reduce high grade ore lost in ribs/pillars underground would add value to the Project.
- The dilution parameters to the open pit and underground are considered appropriate at this stage for the Scoping Study evaluation. However, it is envisioned that there may be upside to be realized by reduced open pit dilution and an improved cost profile as a result.

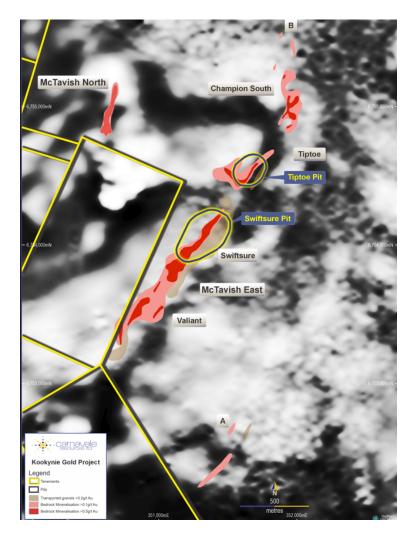
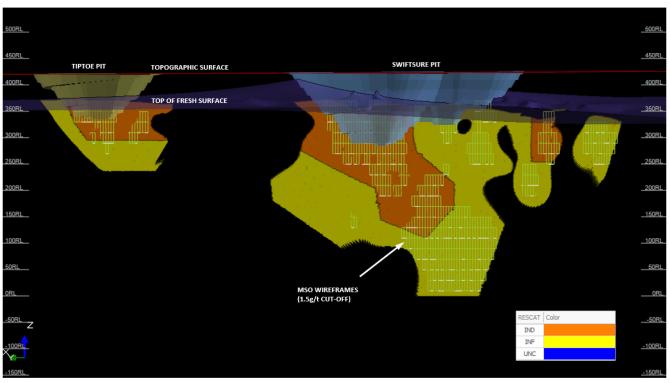


Figure 2, Plan of Kookynie Gold Project with prospects and Swiftsure pit outline

Executive Summary

Carnavale has produced an update to the initial Scoping Study for the Swiftsure and Tiptoe deposits within the Kookynie Gold Project. The positive updated Study has highlighted the strong economics that support developing the Swiftsure deposit into a mine in Western Australia. The Swiftsure deposit is hosted wholly within E40/355 and P40/1480 mining license M40/362 (currently in application stage).


The updated Scoping Study used revised parameters including increased ounces in the MRE, an updated cost profile for the development to include a higher treatment cost for the ore and an increase in gold price reflective of today's gold pricing. The pit optimization software suggested two open pits be developed. The larger one eclipses the original scoping study pit at Swiftsure and an additional pit will be developed at the newly discovered Tiptoe deposit.

The high-grade shoots characteristic of the Kookynie Gold Project extend beneath the base of the Swiftsure pit and are to be developed by an integrated underground mine. The updated Scoping Study provides an outline of the economic potential of this potential mine plan.

The total gold revenue for the project is estimated at A\$501 million using a gold price of A\$5,500. Total costs (inclusive of capital, operating and royalty cost) for the project are estimated at A\$264 million, with total costs per ounce including capital of A\$2,824/oz produced.

The estimated pre-tax free cash generated by the project with an initial mine life of 61 months is A\$237 million with the maximum negative cashflow of A\$21m occurring in month 9. The mine production used in the Study is generated from 70% of the JORC compliant resources in the Indicated category. 84% of the mineral resources extracted during the payback period are classified as Indicated from the Swiftsure open pit.

Cube Consulting produced an updated Scoping Study for the Swiftsure and Tiptoe resource within Kookynie Gold Project, which is based on contract miner, toll treatment operation. Figure 1 includes the location of existing processing plants within 200km of the Swiftsure deposit.

Figure 3, Mineralised lodes looking East - resources classified by colour. (orange – indicated, yellow – inferred, Blue – unclassified not present.)

The scope of work included: collation of input parameters, open pit and underground optimisation studies, conceptual design and basic economic evaluation.

The completed economic evaluation provided the basis for recommending an initial open pit transitioning to underground operational strategy for future feasibility consideration. Carnavale is satisfied that the project economics are strong enough to progress the project to Feasibility Study level and development.

Mining of an open pit design before transitioning to an underground operation has been identified as the preferred strategy for the Swiftsure and Tiptoe deposits based on ore production continuity during the initial phases of the project, followed by underground mining of the orebody at depth.

After adding dilution factors for both open pit and underground mining methods, the total planned mined material from both the open pit and the underground is 970kt @ 3.1g/t containing 96koz ounces of gold (further details page 36 Cube report). Total produced gold after processing recoveries is estimated to be 93koz ounces. The mining production schedule, applying this conservative approach, is provided in Figure 4.

The Swiftsure pit is to be mined first in the development schedule, with the Swiftsure underground mine commenced during the operation of the Swiftsure open pit in month 23. Ore tonnes produced from the underground are delivered in month 27 with the Tiptoe pit being brought online in month 44 once the Swiftsure pit is exhausted and expected to be exhausted at the completion of underground mining at Swiftsure.

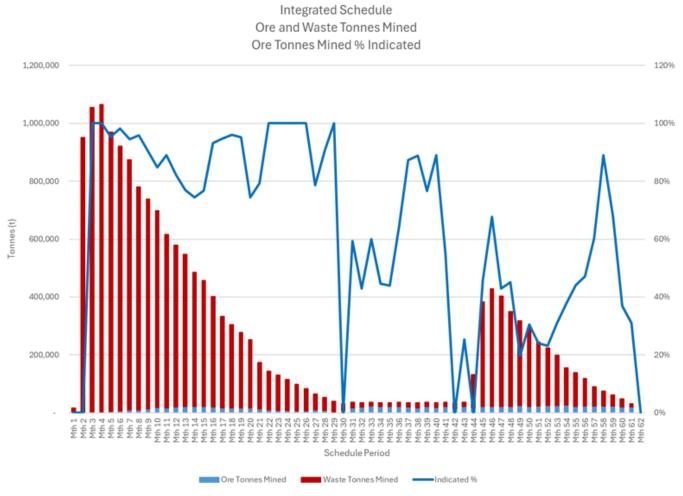


Figure 4, Ore and waste per month with % indicated category - transition to underground in month 27

The mining operation at the Kookynie Gold Project, proposed in the Scoping Study, will be based 60km south of Leonora and 2km west of the Kookynie township. Facilities located at the mine will consist of vehicle and machinery workshops, mining offices, explosive magazine and fuel depot. It is expected that accommodation will be within the Kookynie township adjacent to the mine.

Detailed hydrology, hydrogeology, flora/fauna, geotechnical and ESG assessments will be undertaken as part of a Feasibility Study to develop the Kookynie Gold Project. Carnavale has applied for a Mining license based on robust Scoping Study economics and will progress study work to a Feasibility Study level (FS).

The updated MRE for the Swiftsure and Tiptoe deposits at the Kookynie Gold Project was estimated by Mike Job at Cube Consulting. Mike Job is the Competent Person for stating these Mineral Resources with relevant information supplied within the disclosure released by Carnavale accompanying this release. The Company confirms that the mineral resources underpinning the Production Target and forecast financial information has been signed off by a Competent Person.

Life of Mine physicals summary	Open Pit Design	Pit Design and Underground
Open pit Physicals		
Total Ore tonnes (kt)	379	
Total Ore Grade (g/t)	3.9	
Total Ounces (mined)(koz)	48	
Total Waste Tonnes (kt)	15,945	
Strip Ratio (w:o)	42:1	
Underground Physicals		
Total Ore tonnes (kt)		591
Total Ore Grade (g/t)		2.6
Total Ounces (mined)(koz)		49
Total Development Metres (m)		9,152
Total Vertical Metres (m)		935
Total Waste tonnes (kt)		486
Combined Physicals		
Total Ore Tonnes (kt)		970
Total Ore Grade (g/t)		3.09
Total Ounces Mined (koz)		96
Total Waste tonnes (kt)		16,431
Processing		
Tonnes Processed (kt)	379	970
Recovered Ounces (97% recovery) (koz)	46	93

Table 2, Project LOM physical summary

Project Cost Summary	A\$ million	
Open Pit Capital Cost	3.0	
Open Pit Operating Cost inc. G/A 86.3		
Underground Capital Cost	30.4	
Underground Operating Cost inc. G/A	66.6	
Ore Processing and Transport	77.6	
Total Cost	~A\$264 million	

Table 3, Project Cost Summary (figures subject to rounding. Further details on page 7 and 41 Cube Study)

Open pit Capital Cost element	Value \$k
Site offices/change house/ablutions/crib facility	250
Shipping container and Dome based workshop facility	300
Washdown bay with hydrocarbon separation	200
General site earthworks and ground water storage dam	450
Explosives and detonator magazines	200
Stores/ laydown facility/ diesel storage	400
Communications infrastructure and IT	200
Site vehicles	1,000
TOTAL	\$3,000k

Table 4, Pre-production Open Pit Capital Requirement.

Project Financials	
Gold Price (oz)	A\$5,500
Discount rate	8%
Gross revenue	A\$501m
Net Operating Cashflow (after all Capital, Pre-tax)	A\$237m
Project duration	61 months
Payback period	14 months
Maximum negative cashflow (month 8)	A\$21 m
Pre-Tax NPV ⁸	A\$188m
Pre-Tax IRR	165%

Table 5, Scoping Study financial metrics

Au price (\$/oz)	Undiscounted Cashflow	NPV ⁸	Payback (month)
4,000	\$101m	\$78m	17
4,500	\$146m	\$115m	16
5,000	\$192m	\$151m	15
<u>5,500</u>	<u>\$237m</u>	<u>\$188m</u>	<u>14</u>
6,000	\$283m	\$225m	13
6,500	\$328m	\$261m	13

Table 6, Project sensitivity to varying gold price. (Further details on page 40 Cube Study).

Understanding the Project sensitivity to the realised gold price is critical in understanding both project robustness and also the potential for improved financial outcomes from rising prices.

The gold price sensitivity has been considered in A\$500 per ounce increments between a base of A\$4,000 per ounce and an upper limit of A\$6,500 per ounce. The outcomes are presented in Table 6. The A\$5,500 gold price used for the evaluation is highlighted in green.

The gold price sensitivity indicates (Table 6) that every A\$500 per ounce variation in the gold price generates a A\$45 million variation in the undiscounted cashflow and a A\$37 million variation in the Project NPV. The sensitivity outcomes show that the Project remains viable across the range of gold prices considered.

Funding

To realize the outcomes as described by the Scoping Study funding is required of approximately A\$21 million. Maximum drawdown is expected in month 9 with payback of Capital expected in month 14 of operations. To establish the mine there is a requirement for pre-production Capital for the open pit development of A\$3m that will be used for site infrastructure.

Carnavale believes that it is reasonable to expect that the Company can raise the funds required to fulfill the Capital requirement to support the Project through the payback period. The grounds on which this is based on include:

- The Project has strong technical and economic fundamentals which provide an attractive return on Capital investment and generates robust cashflows at a range of gold prices below current market levels. This provides a strong platform to attract both debt and equity investment.
- The Board and management of Carnavale have a strong track record of raising equity funding as required to further exploration and evaluation of the Kookynie Gold Project
- The Board and Management have strong experience in Project funding mine development projects with a mixture of debt and equity.
- The Project is in a stable geopolitical environment with established infrastructure and regulations.

There is, however, no certainty that the Company will be able to source funding as and when required. Typical project development funding would involve a combination of debt and equity. The cost of finance was not included within the Study. It is possible that such funding may only be available on terms that may be dilutive to or otherwise affect the value of the Company's shares.

Conclusions and Recommendations

The updated Scoping Study for the Swiftsure and Tiptoe deposits has demonstrated that the Kookynie Gold Project has robust economics. The Study published in this document provides justification that the Kookynie Gold Project has the potential to be a commercially viable mining operation.

As a result of the positive outcome of the Scoping Study, Carnavale Resources Ltd will continue to progress the Project to the next stages of development to produce a Feasibility Study that leads to production.

Carnavale is seeking to maximize shareholder value in the development of the Kookynie Gold Project. This Scoping Study describes one way that Carnavale may monetize the assets, the Company recognizes that an outright sale, partial sale or Joint venture of the deposit or Project may also bring strong shareholder value.

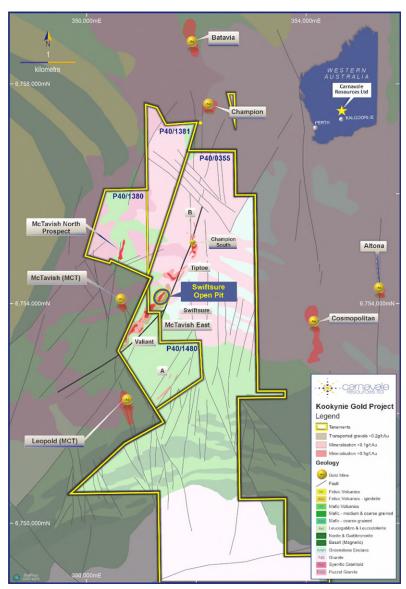


Figure 5, Tenement outlines, Prospect locations and historic mines over geology

Mineral Resource Estimation Methodology and Data (ASX listing Rule 5.8.1)

The following information is provided as an addendum to meet the requirements under ASX listing Rule 5.8.1 This information is provided in detail in the attached JORC Table 1 (Appendix 3)

Project Summary

The Kookynie Gold Project lies within the historic Kookynie mining centre that lies astride a regional overlapping of ENE trending basic acid volcanics, sedimentary and BIFs partially stoped by medium-grained granite about 6 km in diameter; all rocks are of Achaean age. The outcrop of granite is poor and covered by various depths of soil, calcrete and laterite in the Kookynie Area. The region is affected by prominent north trending faults and shears zones with equally prominent ENE shallow dipping faults that appear to be sub parallel to the regional trend of the folded basic extrusives and intrusives.

There are two types of gold mineralisation associated with the Kookynie area, firstly, high-grade gold is associated with pyritic quartz veins hosted within north to northeast dipping structures crosscutting favourable

lithologies also high-grade gold is associated in magnetic, granitic fractions of the granite plutons local to the Kookynie area such as the Puzzle granite that underlies part of the Project.

The Kookynie Project is located in the central portions of the historic mining centre. Gold mineralisation at the Swiftsure deposit is associated with quartz veining on the contact between dolerite and granodiorite, with very high grades (bonanza) in continuous shoots that have sub-vertical plunge to about 150 m below surface, and then appear to plunge at about 60° to the southwest below 150 m.

Extensive historic gold mining occurred at between 1895 and 1922 throughout the Kookynie area, including the Cosmopolitan mine, located 2km east of the Swiftsure deposit, Cosmopolitan was the largest gold producer in the region where historic high-grade gold production amounted to more than 331,000 ounces of gold at 15g/t.

Carnavale's goal is to explore and define high-grade, truckable resources, of a similar size to the historic Cosmopolitan Mine that can be processed at an existing third-party nearby processing plant.

Ref. 1 The Mining Handbook Geol. Surv. Memoir No 1. Chapter2, Economic Geology, Part3, Section1, 1919, Englishman/Cosmopolitan Mine production records listed on Minedex (https://minedex.dmirs.wa.gov.au/).

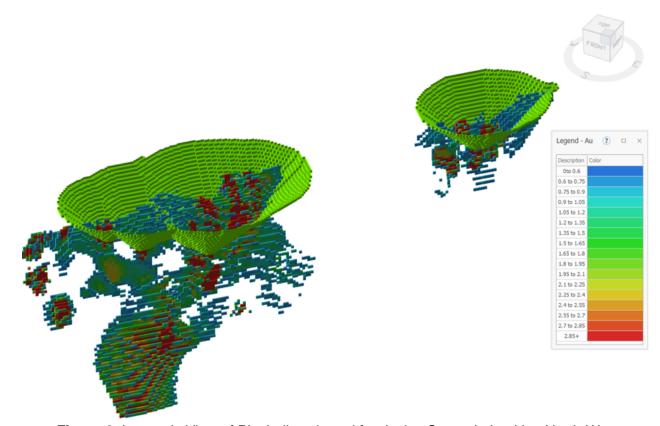


Figure 6, Isometric View of Pit shells selected for design Scenario Looking North-West

Database

Carnavale provided Cube with a series of tables in csv format, which were imported into Datamine and desurveyed as a 3D drill hole file. The data set comprised all drilling for the Kookynie Project, so a subset for Swiftsure and Tiptoe data was taken between 350,800mE and 352,000mE, and 6,753,400mN and 6,754,700mN.

The resulting data set contained 439 drill holes:

- 27 rotary air blast (RAB) holes for a total of 1,196 m
- 250 Air Core (AC) holes for a total of 15,127 m
- 140 reverse circulation (RC) holes for a total of 23,217 m
- 22 diamond core (DD) holes for a total of 6,479 m.

Only AC, RC and DD holes were used for estimation within the mineralised domains – the RAB holes did not intersect mineralisation. All of the holes that intersected mineralisation were drilled by CAV between 2020 and 2025. – i.e., there is no historical drilling.

Drill hole samples were selected within the domain solids, with the numeric DOMAIN codes assigned. Cube undertook visual validation of the coded drill hole intervals against the wireframes and did not identify any issues.

Sampling and sub sampling techniques

Carnavale sampled RC and Diamond drilling as 1m samples except in diamond core when the sample length could be reduced to a minimum of 20cm subject to geology. Aircore was sampled on 2m intervals.

Assay methods

Carnavale geologists submitted samples as 1m samples or 2m composites for aircore to ALS. Samples were collected at ALS, Kalgoorlie. The samples were transported to the ALS facility in Perth by courier.

Samples are dried (nominal 110 degrees Celsius), crushed and pulverized to produce a homogenous representative sub-sample for analysis. All samples are pulverised utilising ALS preparation techniques PUL-23. Diamond core was prepared with a jaw crusher prior to pulverizing. A grind quality target of 85% passing 75µm has been established and is relative to sample size, type and hardness.

Following the sample preparation, samples were analysed by ALS using 4-Acid Digest & Assay [ME-MS61] plus a specific assay for Gold [Au-AA24 and Au-GRA22 for assays above 10g/t] by ALS laboratories.

Estimation Methodology

Cube Consulting was retained by Carnavale Resources Limited to produce a MRE for the Kookynie Gold Project including Swiftsure and Tiptoe deposits, Drill hole data and geological interpretations were supplied by CAV, and Cube produced the MRE using standard industry techniques including estimation domaining, data selection, compositing, variography, estimation and model validation.

Estimates were made for gold only using a 3D categorical indicator kriging (CIK) estimator to produce low-grade, medium-grade and high-grade estimation domains within the supplied lode interpretations. This was required as there are distinct low-grade (sub-grade) zones less than 0.2 ppm within the lode interpretations and a core zone of high-grade (bonanza) greater than 11 ppm.

Once the estimation domains were established, then ordinary kriging (OK) using hard boundaries was performed for Au. Bulk density was assigned per rock type and oxidation state.

Resource Classification Criteria

Cube has reviewed descriptions of the drilling techniques, survey, sampling/sample preparation, analytical techniques, QA/QC and database management and validation of the data used in the interpretation of the Swiftsure deposit and considers it acceptable for use in the generation of a JORC 2012 compliant MRE.

Continuity of the mineralisation is understood with reasonable confidence and the mineralised wireframes conform well to the underlying geology and drill hole assay data.

The mineralised lodes are classified as Indicated where the drilling pattern is 20 m along strike and 20 m down dip, which is all above the 200 mRL. Inferred is material within the mineralised lodes but outside the Indicated, where the drill spacing is about 40 m x 40 m.

This classification considers the confidence of the geological interpretation and estimation, and the quality of the data and reflects the view of the Competent Person.

Mining and Metallurgical Parameters

Appropriate consideration has been given to creation of the Production Target used in the Scoping Study to include the selected mining methods, with pit wall angles in the pit design used as advised by Peter O'Bryan Associates, with conventional WA Goldfields mining parameters used for underground mining which are considered conservative given the shallow depth of the planned mining and the stable ground conditions.

For the underground a vertical level spacing of 22.5m has been used, with a minimum mining width of 1.0m. Additional stope dilution of 0.5m on the footwall and 0.5m on the hanging wall was applied in the stope design process to account for unplanned dilution. Dilution was applied at zero grade. Mining recoveries were set at 100% for development activities and 85% for open stoping to account for stope pillars and mining loss during bogging operations.

For the Open Pit a re-blocking process of the resource block model was undertaken to better reflect the mining of narrow high-grade orebodies with open pit machinery. At a cut-off grade of 0.6g/t, the re-blocking process results in an equivalent grade dilution of 27%, with a 25% increase in tonnes. Cube considers this an appropriate reflection of the anticipated dilution when mining a narrow, higher-grade orebody such as Swiftsure, without any additional mining dilution being added to the optimisation process.

Given the structural nature of the mineralisation, no significant operational factors are anticipated during standard mining activities which would typically result in operational ore loss. On this basis, full (100%) mining recovery of in-situ tonnes and grade has been applied for evaluation purposes.

These assumptions are intended to reflect the fact that detailed work on these inputs has not been carried out. It is Cube's opinion that these parameters represent a conservative estimate, and it is reasonable to expect some improvement in these parameters can and will be achieved in further detailed studies.

Metallurgical work has been carried out by Carnavale in association with IMO and ALS that demonstrates recoveries of between 97% and 99% are achievable. A metallurgical gold recovery figure of 97% has been used in this Study. Further metallurgical work has been commissioned to evaluate variability within the orebody.

Reasonable Basis for Forward Looking Statements

No Ore Reserve has been declared.

This ASX release has been prepared in compliance with the current JORC code (2012) and the ASX listing rules. All material assumptions on which the Scoping Study production target and projected financial information are based are included in this release and disclosed in the table below.

Consideration of Modifying Factors

Criteria	JORC Code explanation	Commentary	
Mineral Resource Estimate for conversion to Ore Resources	 Description of Mineral Resource estimate used as a basis for the conversion to an Ore Reserve Clear statement as to whether the Mineral Resources are reported additional to, or inclusive of, the Ore Reserves. 	 No Ore Reserve has been declared as part of this Scoping Study. The Mineral Resource Estimate was completed by Mike Job of independent mining consultants Cube Consulting Pty Ltd. 	
Parties participating in the Scoping Study and site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits.	 Humphrey Hale, the Competent Person for Sections 1 and 2 of Table 1 supervised all drilling programs conducted at Kookynie (2020 - 2025). Michael Job Of Cube Consulting, the Competent Person for Section 3 of Table 1 has not visited site. Grace Connell of Peter O'Bryan Associates sampled and logged the diamond core for geotechnical purposes. 	
Study Status	 The type of Study undertaken to enable Mineral Resources to be converted to Ore Reserves The code requires that a study to at least Pre-Feasibility Study level has been undertaken to convert Mineral Resources to Ore Reserves. Such Studies will have been carried out and will have determined a mine plan that is technically achievable and economically viable, and that material Modifying Factors have been considered. 	 The Study is at Scoping Study Level (+/-35% accuracy). No Ore Reserve has been declared. 	
Cut-off parameters	The basis of the cut-off grade(s) or quality parameters applied.	 The Scoping Study used a gold price of A\$5,000/oz to optimise the mining parameters. Financials have been quoted at A\$5.500/oz. An open pit mining cut-off grade of 0.8 ppm Au and an underground mining cut-off grade of 1.5 ppm Au were established via an economic model that was used for Scoping Study work undertaken by Cube Consulting. Mining cost inputs have been based on comparable operations within the region. A processing cost of \$65 per tonne treated, and a surface road haulage cost of \$15 per ore tonne have been accounted for to reflect the proposed off-site processing strategy. 	
Mining factors and assumptions	The method and assumptions used as reported in the Pre- Feasibility or Feasibility Study to	The Swiftsure deposit would initially be mined utilizing open pit mining methods, before	

Criteria JORC Code explanation Commentary convert the Mineral Resource to transitioning to underground extraction utilizing an Ore Reserve (i.e. either by conventional underground methods (decline application of appropriate factors access with long hole stoping) to access the by optimisation or by preliminary orebody at depth. or detailed design Open pit optimisations were carried out using The choice, nature and Whittle optimization software. appropriateness of the selected The block model was re-blocked to a Standard mining method(s) and other mining parameters including Mining Unit (SMU) size of $2.5(x) \times 5(y) \times 5m(z)$ associated design issues such as to reflect open pit mining extraction resolution. pre-strip, access, etc. This re-blocking produced a grade dilution of The assumption made regarding 27% and a tonnage dilution of 25%, which is geotechnical parameters (e.g. pit considered appropriate for the mineralisation slopes, stope sizes, etc.), grade geometry. No additional dilution has been control and pre-production applied post-optimisation. drilling. The major assumptions made, 100% mining recovery has been applied for and mineral resource model used open pit mining. for pit and stope optimisation (if Underground mineable stope shapes were appropriate) created using Deswik.SO software. Stope The mining dilution factors used. shapes were generated with Au grade as the The mining recovery factors optimisation field and the stoping cut-off grade used. applied (1.5g/t Au). Any minimum mining widths used. A vertical level spacing of 22.5m has been The manner in which inferred used, with a minimum mining width of 1.0m. Mineral Resources are utilised in Additional stope dilution of 0.5m on the mining studies and their footwall and 0.5m on the hanging wall was sensitivity of the outcome to their applied in the stope design process to account inclusion. for unplanned dilution. Dilution was applied at zero grade. Mining recoveries were set at 100% for development activities and 85% for open stoping to account for stope pillars and also mining loss during bogging operations. 70% of the mining production target is in the indicated class, with the payback period of 14 months covered by 84% indicated classified resources. The inferred material has been included in the later stages of the mine production target. It is anticipated that this will be drilled at a later stage to bring it into indicated classification. Processing methodologies are conventional The basis for assumptions or Metallurgical factors predictions regarding WA goldfields CIL methods with high or assumptions metallurgical amenability. It is recoveries typical of this method. always necessary as part of the Kookynie ore is likely to go to a toll processing process of determining facilities within 100km of the deposit, with reasonable prospects for multiple facilities presently operation. eventual economic extraction to consider potential metallurgical Metallurgical test work by IMO and ALS on

methods, but the assumptions

Criteria	JORC Code explanation	Commentary
	regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	 oxide and fresh rock samples undertaken by the Company showed recoveries ranging between 97% and 99%. The recoveries assumed for the scoping study was 97%. Further, more detailed metallurgical test work has been commissioned to evaluate the gold recoveries and reagent consumption from the mineralisation. No deleterious elements are present. No bulk testwork or pilot testwork was done. The historic Cosmopolitan mine 2km to the East has known history of high recoveries.
Environmental factors or assumptions	The status of studies of potential environmental impacts of the mining operation. Details of waste rock characterisation and the consideration of potential sites, status of design options considered and where applicable, the status of approvals for process residue storage and waste dumps should be reported.	 There are no known environmental issues, with a number of operational gold mines within 50 km of Swiftsure in similar physical geographical settings. Multi element analysis has been taken on samples throughout the orebody to support characterisation studies at a later date. No design work has been completed on the waste dump design. The project is located on an Exploration license. A Mining license has been applied for.
Costs	 The derivation of, or assumptions made, regarding projected Capital costs in the study. The methodology used to estimate operating costs. Allowances made for the content of deleterious elements. The source of exchange rates used in the Study. Derivation of transport charges The basis for forecasting or source of treatment and refining charges, penalties for failure to meet specification, etc. The allowances made for the payment of royalties both government and private. 	 Capital costs have been estimated by various mining consultants including Cube Consulting, cross referenced and checked against the Company's expertise. Estimates are based on recent industry costs supplied by independent consultants. Operating costs have been developed by Cube consulting and other consultants cross checked by the Company's representatives. No deleterious elements have been encountered. All amounts are in Australian Dollars (A) as of Sept 2025. Ore transport costs have been estimated by Cube consultants based on recent industry experience. 0.15c/km/t. Toll treatment costs are derived from Cube Consultants crossed checked by the Company's representatives against current contracts. \$65/t. The Company has applied the 2.5% government royalty to the cost structure. No further royalties are required.

Criteria	JORC Code explanation	Commentary
Revenue Factors	 The derivation of, or assumptions made regarding revenue factors including head grade metal or commodity price(s)exchange rates, transportation and treatment charges, penalties, net smelter returns, etc. The derivation of assumptions made of metal or commodity price(s), for the principal minerals and coproducts. 	 The derivation of feed grades comes from the mineral resource estimates with the application of dilution modifying factors. Gold bearing ore will be transported to be toll treated at a nearby processing plant. Dore bars produced at the plant will be shipped to the Perth Mint for refining. Gold is sold directly by the Mint at the LME determined price of the day. The gold price used for the mine design was A\$5,000. financial reporting of the outcome of the study used a current gold price of A\$5,500.
Market assessment	 The demand, supply and stock situation for the particular commodity, consumption trends and factors likely to affect supply and demand for the future. A customer and competitor analysis along with identification of likely market windows for the product Price and volume forecasts and the basis of these forecasts. For industrial minerals he customer specification, testing and acceptance requirements prior to a supply contract. 	Gold is sold readily on the open market, with purchasers including the Perth Mint. Prices are set daily by the LME. Gold is not an industrial mineral so demand and pricing are driven by perceptions of economic factors.
Economic	The inputs to the economic analysis to produce the net present value (NPV) in the study, the source and confidence of these economic inputs including estimated inflation discount rate etc.	 A discount of 8% was used for this study and nil inflation has been assumed. Economic analysis includes a sensitivity analysis on various scenarios around costs, revenues, and discount rates.
Social	The status of agreements with Key Stakeholders and matters leading to social license to operate.	 All activities are wholly on remote Exploration or Prospecting licenses that are in the process of being converted to mining licences within an historic mining district near the Kookynie townsite in Western Australia. Engagement with stakeholders is ongoing. Further work is underway and justified by the positive outcomes of this Study.

Criteria	JORC Code explanation	Commentary
Other (include legal & Governmental)	 To the extent relevant, the impact of the following on the project and/or on the estimation and classification of ore reserve: Any identified material naturally occurring risks. The status of material legal agreements and marketing agreements The status of governmental agreements and approvals critical to the viability of the project, such as mineral tenement status, and government and statutory approvals. There must be reasonable grounds to expect that all necessary Government approvals will be received within the timeframes anticipated in the pre-feasibility or feasibility study. Highlight and discuss the materiality of any unresolved matter that is dependent on a third party on which extraction is contingent. 	No Ore Reserve has been declared.
Classification	 The basis for the classification of the Ore Reserves into varying confidence categories. Whether the result appropriately reflects the Competent Person's view of the deposit. The nature of Probable Ore Reserves that have been derived from Measured Mineral Resources (if any) 	 No Ore Reserve has been declared. Within the Mineral Resource, the mineralised lodes are classified as Indicated where the drilling pattern is 20 m along strike and 20 m down dip, which is all above the 200 mRL. Inferred is material within the mineralised lodes but outside the Indicated, where the drill spacing is about 40 m x 40 m. This classification considers the confidence of the geological interpretation and estimation, and the quality of the data and reflects the view of the Competent Person.
Audits or reviews	The results of any audits or reviews of Ore Reserve estimates.	No Ore Reserve has been calculated, although the independent consultants used for the resource estimate (Cube Consultants) conduct internal peer review.
Discussion of relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence level in the Ore Reserve estimate using an approach or procedure deemed	 No Ore Reserve has been declared. The Mineral Resource relates to global tonnage and grade estimates. There has been no mining at Swiftsure, and

Criteria	JORC Code explanation	Commentary
	appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the reserve within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. Accuracy and confidence should extend to specific discussions of any applied modifying Factors that may have a material impact on Ore Reserve viability, or for which there are remaining areas of uncertainty at the current stage. It is recognised that this may not be possible or appropriate in all circumstances. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.	therefore no reconciliation data is available.

Mineral Resource Estimate Tables for Kookynie Gold Project

A summary of the Mineral Resource Estimate reported by classification is shown (Table 4) – a lower Au cut-off grade of 0.8 g/t is used for open pittable material above the 320m RL and 1.5 g/t Au for underground material below the 320m RL.

Classification	K Tonnes	Au g/t	Au k Ounces
Measured			
Indicated	426.0	5.6	77.2
Inferred	416.3	3.0	39.7
Total	842.3	4.3	116.9

Table 4, July 2025 Kookynie MRE including Swiftsure and Tiptoe lodes

Classification	K Tonnes	Au g/t	Au k Ounces
Measured			
Indicated	86.8	3.6	10.0
Inferred	42.4	1.1	1.5
Total	129.2	2.8	11.5

Table 5, July 2025 Kookynie MRE Tiptoe lodes only

The figures broken down by open cut or underground location are shown (Table 6).

	sw250707m. CoG 0.8 > 320 mRL, 1.5 < 320 mRL							
Location	CoG	Classification	Volume	tonnes	density	Au g/t	Au Oz	
O/C	8.0	Indicated	92,055	240,519	2.61	5.25	40,623	
O/C	0.8	Inferred	63,044	162,865	2.58	2.26	11,843	
O/C	8.0	All	155,099	403,383	2.60	4.05	52,467	
U/G	1.5	Indicated	68,684	185,445	2.70	6.13	36,570	
U/G	1.5	Inferred	93,881	253,478	2.70	3.42	27,876	
U/G	1.5	All	162,564	438,923	2.70	4.57	64,445	
Both		Indicated	160,738	425,964	2.65	5.64	77,193	
Both		Inferred	156,925	416,343	2.65	2.97	39,719	
Both		All	317,663	842,307	2.65	4.32	116,912	

Table 6, MRE for Swiftsure and Tiptoe lodes by Location (open pit above 320m RL and underground below 320m RL).

Detailed reports by sub-domain at various cut off grades for the entire model (regardless of open cut or underground) are shown in Table 7,8 and 9.

- Lodes 1,2 and 22 represent Swiftsure lodes
- Lodes 3 and 4 represent Tiptoe lodes

Sub Domains 1 = low grade 2 = Medium Grade 3 = High Grade

	Global Report (No Lower CoG, so includes sub-grade)						
Classification	Lode	Subdom	Volume	Tonnes	Density	Au g/t	Au Oz
Indicated	1	1	16,163	42,804	2.65	0.10	143
Indicated	1	2	122,267	324,717	2.66	2.16	22,566
Indicated	1	3	14,060	37,520	2.67	32.57	39,292
Indicated	2	1	1,637	4,306	2.63	0.22	30
Indicated	2	2	5,191	13,597	2.62	1.44	629
Indicated	2	3	3,024	7,935	2.62	24.66	6,291
Indicated	3	2	32,622	86,751	2.66	0.75	2,098
Indicated	3	3	12,287	33,076	2.69	6.59	7,010
Indicated	4	1	3,190	8,496	2.66	0.04	12
Indicated	4	2	31,645	82,949	2.62	0.58	1,542
Indicated	4	3	4,384	11,837	2.70	4.50	1,714
In	dicated		246,470	653,987	2.65	3.87	81,326
Inferred	1	1	21,364	56,766	2.66	0.08	137
Inferred	1	2	143,966	384,910	2.67	2.11	26,161
Inferred	1	3	2,525	6,740	2.67	28.03	6,075
Inferred	2	1	154	407	2.65	0.22	3
Inferred	2	2	17,039	45,235	2.65	1.45	2,104
Inferred	2	3	2,785	7,446	2.67	11.61	2,780
Inferred	3	2	36,172	95,521	2.64	0.79	2,414
Inferred	3	3	409	1,104	2.70	5.71	202
Inferred	4	1	531	1,433	2.70	0.03	1
Inferred	4	2	20,256	54,472	2.69	0.51	892
Inferred	4	3	358	967	2.70	5.18	161
Inferred	22	2	20,315	54,080	2.66	2.90	5,050
Ir	ıferred		265,872	709,081	2.67	2.02	45,980
Indicate	ed + Inferr	ed	512,342	1,363,068	2.66	2.90	127,306

Table 7, Detailed MRE Cut-off grade <0ppm

	Global Report > <mark>0.8 ppm Au</mark>						
Classification	Lode	Subdom	Volume	Tonnes	Density	Au g/t	Au Oz
Indicated	1	2	117,343	311,646	2.66	2.22	22,267
Indicated	1	3	14,060	37,520	2.67	32.57	39,292
Indicated	2	2	5,191	13,597	2.62	1.44	629
Indicated	2	3	3,024	7,935	2.62	24.66	6,291
Indicated	3	2	11,600	30,461	2.63	0.93	906
Indicated	3	3	12,287	33,076	2.69	6.59	7,010
Indicated	4	2	6,121	15,725	2.57	0.91	458
Indicated	4	3	4,384	11,837	2.70	4.50	1,714
In	dicated		174,010	461,797	2.65	5.29	78,566
Inferred	1	2	129,991	347,394	2.67	2.27	25,323
Inferred	1	3	2,525	6,740	2.67	28.03	6,075
Inferred	2	2	17,030	45,212	2.65	1.45	2,104
Inferred	2	3	2,785	7,446	2.67	11.61	2,780
Inferred	3	2	19,888	51,723	2.60	0.90	1,497
Inferred	3	3	409	1,104	2.70	5.71	202
Inferred	4	2	1,371	3,593	2.62	0.88	101
Inferred	4	3	358	967	2.70	5.18	161
Inferred	22	2	20,315	54,080	2.66	2.90	5,050
Inferred			194,672	518,259	2.66	2.60	43,293
Indicate	ed + Inferr	ed	368,681	980,056	2.66	3.87	121,859

Table 8, Detailed MRE Cut-off grade >0.8ppm

	Global Report > 1.5 ppm Au						
Classification	Lode	Subdom	Volume	Tonnes	Density	Au g/t	Au Oz
Indicated	1	2	93,792	249,613	2.66	2.48	19,905
Indicated	1	3	14,060	37,520	2.67	32.57	39,292
Indicated	2	2	1,466	3,775	2.58	1.69	206
Indicated	2	3	3,024	7,935	2.62	24.66	6,291
Indicated	3	3	12,287	33,076	2.69	6.59	7,010
Indicated	4	3	4,384	11,837	2.70	4.50	1,714
Inc	dicated		129,013	343,756	2.66	6.73	74,417
Inferred	1	2	87,821	236,420	2.69	2.76	20,978
Inferred	1	3	2,525	6,740	2.67	28.03	6,075
Inferred	2	2	6,589	17,022	2.58	2.07	1,134
Inferred	2	3	2,785	7,446	2.67	11.61	2,780
Inferred	3	3	409	1,104	2.70	5.71	202
Inferred	4	3	358	967	2.70	5.18	161
Inferred	22	2	18,802	50,264	2.67	3.03	4,894
Inferred			119,289	319,963	2.68	3.52	36,225
Indicate	ed + Inferr	ed	248,302	663,719	2.67	5.18	110,641

Table 9, Detailed MRE cutoff grade >1.5ppm

This release is approved by the Board of Carnavale Resources Limited.

For further information contact:

Humphrey Hale - CEO

P: +61 8 9380 9098

Email: info@carnavaleresources.com

Competent Persons Statement

The information that relates to Exploration Results for the projects discussed in this announcement represents a fair and accurate representation of the available data and studies; and is based on, and fairly represents information and supporting documentation reviewed by Mr. Humphrey Hale, a Competent Person who is a Member of The Australian Institute of Geoscientists. Mr. Hale is the Chief Executive Officer of Carnavale Resources Limited and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resource and Ore Reserves". Mr. Hale consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

The information in this announcement that relates to Estimation and Reporting of Mineral Resources at the Kookynie Gold Project is based on information compiled by Mr Michael Job, who is a Fellow of the Australasian Institute of Mining and Metallurgy (FAusIMM). Mr Job is an independent consultant employed by Cube Consulting. Mr Job has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Job consents to the inclusion in the report of the matters based on the information in the form and context in which it appears.

Forward Looking Statements

Statements regarding Carnavale's plans with respect to the mineral properties, resource reviews, programs, economic studies, and future development are forward-looking statements. There can be no assurance that Carnavale's plans for development of its mineral properties will proceed any time in the future. There can also be no assurance that Carnavale will be able to confirm the presence of additional mineral resources/reserves, that any mineralisation will prove to be economic or that a mine will successfully be developed on any of Carnavale's mineral properties.

Compliance Statement - Kookynie Gold Project

With reference to previously reported Exploration results and Minerals resources, the company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and, in the case off estimates of mineral resources that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

Reasonable Basis for Forward Looking Statements

No Ore reserve has been declared. This ASX release has been prepared in compliance with the JORC code (2012) and the ASX listing rules. All the material assumptions on which the Scoping Study production target and projected financial information are based have been included in this release and disclosed.

Consideration of modifying factors in the format specified by JORC Code (2012) Section 4 is contained above.

Carnavale Resources Pty Ltd SCOPING STUDY UPDATE - MINING ENGINEERING

Kookynie Gold Project

September 2025

© Cube Consulting Pty Ltd Perth, Western Australia Cube Project: 2025_094 www.cubeconsulting.com

Principal Author

Millel

Mitch Rohr Director and Principal Mining Engineer 26th September 2025

Distribution: Number of Copies

Client 1 (electronic)

Cube Consulting 1 (electronic)

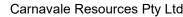
Cube Consulting Pty Ltd

ABN 84 094 321 829

Level 4, 1111 Hay Street

West Perth WA 6005

Phone: +61 8 9442 2111


Website: www.cubeconsulting.com

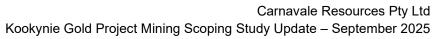

Cube Report: 2025.094a

TABLE OF CONTENTS

1		SUMMARY	,	2
2		RESOURCE	E MODELS	3
3		OPEN PIT I	INPUT PARAMETERS	4
		3.1.1	KEY OPTIMISATION INPUTS	4
		3.1.2	MINING DILUTION AND ORE LOSS	4
		3.1.3	ORE HAULAGE COSTS	6
		3.1.4	MINING COSTS	6
		3.1.5	PROCESSING COSTS AND RECOVERY	7
		3.1.6	CAPITAL COSTS	7
		3.1.7	CUT-OFF GRADE CALCULATION	7
		3.1.8	GEOTECHNICAL PARAMETERS	8
4		PIT OPTIMI	ISATION	9
5		PIT DESIGN	NS	15
6		UNDERGR	OUND INPUT PARAMETERS	19
		6.1.1	KEY OPTIMISATION INPUTS	19
		6.1.2	MINING DILUTION AND ORE LOSS	20
		6.1.3	MINING COSTS	21
		6.1.4	PROCESSING COSTS AND RECOVERY	22
		6.1.5	CAPITAL COSTS	22
		6.1.6	CUT-OFF GRADE CALCULATION	22
		6.1.7	GEOTECHNICAL PARAMETERS	23
7		UNDERGR	OUND OPTIMISATION	24
8		UNDERGR	OUND DESIGNS	30
	8.1	OPEN F	PIT PORTAL ACCESS	30
	8.2	ACCES	SS DEVELOPMENT	30
	8.3	EMERG	GENCY EGRESS	30
	8.4	VENTIL	LATION	30
	8.5	DEWAT	TERING	31
	8.6	MINE S	SERVICES	31
	8.7	MINING	G OPERATIONS	31
	8.8	MINE L	AYOUTS	31

9		INTEGRATED PRODUCTION SCHEDULE	35
	9.1	SCHEDULING CONSTRAINTS AND DRIVERS	35
	9.2	SCHEDULE RESULTS	36
10		FINANCIAL EVALUATION	40
11		SLIMMARY	43

LIST OF FIGURES

Figure 3-1 Grade-Tonnage Curve showing Resource and Mining (regularised) models	5
Figure 4-1 Kookynie Tonnage/Cash Flow Chart	. 11
Figure 4-2 Isometric View of Pit Shells Selected for Design.	. 12
Figure 4-3 East-West Cross Section view of Swiftsure Pit Shell Selected for Design	
Figure 4-4 East-West Cross Section view of Tiptoe Pit Shell Selected for Design	. 14
Figure 5-1: Swiftsure Pit Design	. 16
Figure 5-2: Tiptoe Pit Design	. 17
Figure 7-1 Long Section Looking East of Optimised Wireframes and Grade Coded Model	25
Figure 7-2 Long Section Looking East of Optimised Wireframes and Resource Category Coded Model	26
Figure 7-3 Isometric View of Optimised Wireframes Against Resource Model (1.5g/t Cut-off) by Rescat	27
Figure 7-4 Long Section Looking East Showing Optimised Wireframes Coloured by Grade	28
Figure 7-5 Long Section Looking East Showing Optimised Wireframes Coloured by Resource Category in	ncl.
additional material assessed	29
Figure 8-1 Isometric View of Swiftsure Pit to Underground Scenario Looking North-East	32
Figure 8-2 Isometric View of Swiftsure Pit to Underground Scenario Looking North-West	33
Figure 8-3 Plan View of Typical Level Layout	34
Figure 9-1 Integrated Schedule Ore & Waste Tonnes Mined	37
Figure 9-2 Integrated Schedule Ore Tonnes and Grade Mined	38
Figure 9-3 Integrated Schedule Cumulative Ounce Production	39
Figure 10-1 Open Pit to Underground Scenario Cashflow Profiles	42

LIST OF TABLES

Table 2-1 Mineral Resource Model details	3
Table 3-1 Key Optimisation Inputs	
Table 3-2 Resource and mining model grade-tonnage comparison	
Table 3-3 Ore Haulage Costs	
Table 3-4 Capital Cost Items	
Table 3-5 Overall Pit Slope Angles for Pit Optimisation	
Table 4-1 Optimisation Shell Selections	
Table 5-1 Pit Design Parameters	
Table 5-2 Ramp Design Parameters	
Table 5-3 Swiftsure Pit Design vs Optimisation.	18
Table 6-1 Key Optimisation Inputs	
Table 6-2 Optimisation Parameters Applied	
Table 6-3 Mining Costs	
Table 6-4 Capital Cost Items	
Table 6-5 Cut-off Grade Calculations	
Table 10-1 Gold Price Sensitivity Analysis	
Table 10-2 Financial Evaluation Outputs	

Disclaimer

Purpose of this document

This report was prepared exclusively for Carnavale Resources Pty Ltd ('the Client') by Cube Consulting Pty Ltd ('Cube'). The quality of information, conclusions, and estimates contained in this report are consistent with the level of the work carried out by Cube to date on the assignment, in accordance with the proposal agreed between Cube and the Client.

Notice to third parties

Cube has prepared this report using its best endeavours, having regard to the particular needs and interests of the client, and in accordance with their instructions. This report is not designed for any other party's particular needs or interests. Third party needs and interests may be distinctly different to the Client's needs and interests, and the report may not be sufficient nor fit or appropriate for the purpose of the third party.

Cube expressly disclaims any representation or warranty to third parties regarding this report or the conclusions or opinions set out in this report (including without limitation any representation or warranty regarding the standard of care used in preparing this report, or that any forward-looking statements, forecasts, opinions or projections contained in the report will be achieved, will prove to be correct or are based on reasonable assumptions). If a third party chooses to use or rely on all or part of this report, then any loss or damage the third party may suffer in so doing is at the third party's sole and exclusive risk.

Cube has created this report using data and information provided by or on behalf of the Client (and the Client's agents and contractors). Unless specifically stated otherwise, Cube has not independently verified that all data and information is reliable or accurate. Cube accepts no liability for the accuracy or completeness of that data and information, even if that data and information have been incorporated into or relied upon in creating this report.

Results are estimates and subject to change

The interpretations and conclusions reached in this report are based on current scientific understanding and the best evidence available to the authors at the time of writing. It is the nature of all scientific conclusions that they are founded on an assessment of probabilities and, however high these probabilities might be, they make no claim for absolute certainty.

The ability of any person to achieve forward-looking production and economic targets is dependent on numerous factors that are beyond Cube's control and that Cube cannot anticipate. These factors include, but are not limited to, site-specific mining and geological conditions, management and personnel capabilities, availability of funding to properly operate and capitalize the operation, variations in cost elements and market conditions, developing and operating the mine in an efficient manner, unforeseen changes in legislation and new industry developments. Any of these factors may substantially alter the performance of any mining operation.

1 SUMMARY

Cube Consulting (Cube) was engaged by Carnavale Resources Pty Ltd (Carnavale) to complete mining engineering work towards a scoping study update for the Kookynie Gold Project (the Project) located in Western Australia. The scoping study update builds on the scoping study completed by Cube in 2024.

The scope of work included: collation and revision of input parameters, open pit and underground optimisation studies, conceptual open pit and underground design and basic economic evaluation. The study has been completed to a level of accuracy commensurate with that required for a Scoping Study as defined by Clause 38 of the JORC code.

The reporting provided in the study reflects only Indicated and Inferred Resources. No Exploration Target or Unclassified material has been included in the results provided.

The study considered extraction of Mineral Resources via open pit and underground methods.

The evaluation process concluded that the preferred strategy is extraction of ore from the Swiftsure and Tiptoe deposits via two open pits, transitioning to an underground mine beneath the Swiftsure pit to exploit the depth extent of the Swiftsure deposit. This strategy generates 970,000t of ore mined at an average grade of 3.09g/t for a total of 96,000 ounces mined and 93,500 ounces recovered, yielding a Net Present Value of \$188 million over a 61-month operating duration with a 14-month payback period.

2 RESOURCE MODELS

The resource model utilised in this study was generated by Cube for Carnavale Resources and was an update to the previous maiden Mineral Resource Model, after additional drilling was completed. The model was estimated using ordinary kriging (OK) techniques and supplied rotated about the Z-axis 45 degrees to the East.

The resource model covers both the Swiftsure and Tiptoe deposits.

The mineral resource model utilised is detailed in Table 2-1.

Table 2-1 Mineral Resource Model details

	Swiftsure Rotated Model (+45°) – filename SW250707M.dm					
	Origin	Block Size	No. Blocks	Sub-Block	Extent	
Х	350,700	5	120	0.25	600	
Υ	6,753,800	10	140	1.0	1400	
Z	0	5	90	1.0	450	

3 OPEN PIT INPUT PARAMETERS

Input parameters were refined from the previous scoping study in consultation with Carnavale, including revisions to costs, revenues and processing parameters. These input parameters were used to complete revised open pit and underground optimisations, detailed designs and schedules.

All dollars quoted are in Australian dollars unless otherwise specified.

3.1.1 **Key Optimisation Inputs**

Key inputs relating to processing costs, revenue and other costs are shown in the table below.

Table 3-1 Key Optimisation Inputs

Item	Unit	Input
Mining Costs		
Load and Haul – Base rate	\$/t mined	3.50
Load and Haul – Base level (pit exit)	mRL	430
Load and Haul – Depth increment	\$/t/10m	0.03
Drill and Blast – Oxide	\$/t mined	0.271
Drill and Blast – Transitional	\$/t mined	1.20
Drill and Blast - Fresh	\$/t mined	1.60
Mining Ore Based Costs		
Road Haulage to Plant	\$/t ore	15.00
Ore Re-handle	\$/t ore	5.00
Grade Control	\$/t ore	2.00
Processing Cost		
Oxide, Transition & Fresh - Free Milling	\$/t ore	65.00
General and Admin	\$/t ore	5.00
Total Ore Based Cost		
Oxide, Transition & Fresh - Free Milling	\$/t ore	92.00
Process Plant Throughput (nominal)	ktpa	200
Process Au Recovery		
Oxide, Transition & Fresh - Free Milling	%	97%
Revenue		
Metal Price Au	AU\$/oz	5,000
Royalty Au (State)	%	2.5%
Net Gold Price	AU\$/oz	4,875
Annual Discount Rate	%	8.0%
Cut-off Grade		
Oxide, Transition & Fresh	g/t Au	0.60

¹ Assumes 30% of oxide material is blasted at a rate of \$0.90/t blasted.

3.1.2 Mining Dilution and Ore Loss

The process of preparing the updated resource model for use in the scoping study update included regularisation of the model to a Selective Mining Unit (SMU) block size of 2.5m (x) x 5m (y) x 5m(z). This process is undertaken to produce a mining model at a representative block size aligned with the scale at which the ore can be practically excavated. Ore losses and dilution are incorporated into the block model during this process, providing a reasonable estimate of recoverable resources above a specified cut-off grade.

The scoping study assumes a small, selective open pit mining fleet will be used to mine the open pits. Cube considers the block size to be appropriate for the size of equipment used in the study. The impact of the regularisation process can be analysed by reviewing the grade-tonnage curves for the resource and mining models. This relationship is shown graphically in Figure 3-1. These grade-tonnage curves have been capped at a 2.0g/t Au cut-off to provide detail around likely open pit cut-off grades.

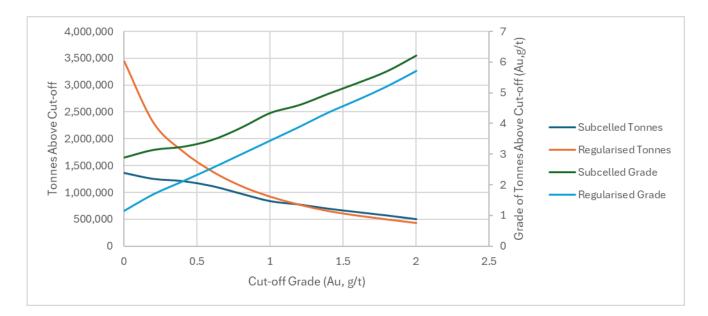


Figure 3-1 Grade-Tonnage Curve showing Resource and Mining (regularised) models

Considering cut-off grades of 0.0 - 2.0g/t Au, the associated dilution and recovery behaviour of the regularised model versus the underlying resource is shown in Table 3-2.

Table 3-2 Resource and mining model grade-tonnage comparison

	s	subcelled Mo	del	Re	gularised M	odel		
Au Cut-off (g/t Au)			Ounces (oz Au)	Tonnes (t)	Grade (g/t Au)	Ounces (oz Au)	Change in Tonnes (%)	Change in Grade (%)
0	1,363,068	2.9	127,089	3,441,627	1.15	127,248	152%	-60%
0.2	1,253,580	3.15	126,956	2,301,321	1.69	125,042	84%	-46%
0.4	1,212,703	3.25	126,715	1,771,453	2.11	120,172	46%	-35%
0.6	1,122,013	3.47	125,175	1,399,645	2.54	114,299	25%	-27%
0.8	980,056	3.87	121,942	1,124,921	2.99	108,139	15%	-23%
1	842,175	4.35	117,783	924,837	3.44	102,286	10%	-21%
1.2	780,001	4.61	115,608	775,719	3.89	97,016	-1%	-16%
1.4	701,979	4.98	112,394	656,906	4.36	92,083	-6%	-12%
1.6	638,698	5.33	109,450	573,568	4.77	87,962	-10%	-11%
1.8	577,727	5.71	106,060	502,730	5.21	84,210	-13%	-9%
2	509,728	6.22	101,934	436,461	5.71	80,126	-14%	-8%

At a cut-off grade of 0.6g/t, the regularisation process results in an equivalent grade dilution of 27%, with a 25% increase in tonnes. Cube considers this an appropriate reflection of the anticipated dilution when mining a narrow, higher-grade orebody such as that found at the Project, and therefore no additional mining dilution or ore loss factors were added to the optimisation process.

3.1.3 **Ore Haulage Costs**

There is currently no on-site processing capacity at the Project and the scoping study contemplates off-site haulage of ore to a regional processing facility for treatment by way of toll treating. An additional ore-based cost was added to account for this haulage cost. A haulage distance of 100km was nominated, accommodating transport to a range of locations including gold facilities at:

- AngloGold Ashanti Australia Limited Sunrise Dam Gold Mine
- Genesis Minerals Limited Gwalia Operations, Mount Morgans Processing Plant
- Gold Fields Limited Granny Smith Gold Mine, Agnew Gold Mine
- Vault Minerals Limited King of the Hills Gold Mine
- Bellevue Gold Limited Bellevue Gold Mine
- Regis Resources Limited Duketon Gold Project

The ore haulage cost applied is provided in Table 3-3.

Table 3-3 Ore Haulage Costs

Danasit	Distance	Unit cost	Total cost		
Deposit	km	\$/t.km	\$/t ore		
Swiftsure	100	0.15	15.00		

3.1.4 Mining Costs

Loading, hauling, drilling and blasting costs for open pit mining were estimated by Cube based on contract mining rates applied for previously run high level schedules. These costs represent haulage from a single-stage open pits and make no differentiation between ore and waste material movements.

Drill and blast costs were estimated based on Cube's internal database of comparable projects and was applied based on oxidation type. It was assumed that 30% of oxide material, 100% of transitional and 100% of fresh material would be subject to drill and blast.

A monthly cost allocation of \$65,000 was also incorporated for the provision of electrical power through diesel generator sets on a rental / hire basis.

3.1.5 Processing Costs and Recovery

The scoping study contemplates remote processing of ore via toll treatment at a regional processing facility. Processing costs and recovery are considered as part of the optimisation process and Cube has applied a processing cost of \$65 per tonne processed. Process recovery has been assumed to be 97% and is based on recent test work of ores from the Project.

Processing costs and recoveries have been applied uniformly across all rock types within the resource model.

3.1.6 Capital Costs

The capital cost inputs considered for the study are reflective of the scale of the envisioned Project and the absence of on-site processing requirements. The capital cost items accounted for in the evaluation are provided in Table 3-4.

Table 3-4 Capital Cost Items

COST ELEMENT	VALUE (\$)
Site offices / change house / ablutions / crib facilities	\$250,000
Shipping container & dome-based workshop facility	\$300,000
Washdown bay with hydrocarbon separation	\$200,000
General site earthworks	\$250,000
Explosives and detonator magazines	\$200,000
Diesel storage	\$250,000
Stores / laydown facility	\$150,000
Groundwater storage dam and pumping system	\$200,000
Communications infrastructure	\$100,000
Site IT Infrastructure	\$100,000
Site vehicles	\$1,000,000
TOTAL	\$3,000,000

The scoping study results indicate a relatively short mine life, therefore it is considered that some of the items designated as capital (such as site buildings, workshop facilities and magazines) would most likely be acquired either through hire / rental agreements or included in the scope of supply for a mining contractor. For the purposes of this study, they have been treated as capital costs for the owner.

3.1.7 Cut-off Grade Calculation

A treatment plant breakeven cut-off grade was calculated to demonstrate a theoretical break-even point within the resources. A theoretical calculated cut-off was determined using the following formula:

$$Cut - off Grade (Au g/t) = \frac{Total Ore Costs}{Metal Price x (1 - Royalty)x Recovery}$$

Where: Total Ore Costs = Processing and all ore related costs (\$/t)

Metal Price = Gold price (\$/g)

Royalty = State Royalty plus land title royalty (%)

Recovery = Metallurgical Recovery (%)

The calculated breakeven open pit cut-off grade using the updated input parameters is 0.6 g/t Au for the Swiftsure resource.

3.1.8 **Geotechnical Parameters**

At the time of the pit optimisation process, detailed geotechnical assessment for the project had not been completed, however Cube used the following wall angles to use in the open pit optimisation runs as shown in Table 3-5.

Table 3-5 Overall Pit Slope Angles for Pit Optimisation

Material	Overall Slope Angle Applied
Colluvium (Oxide)	40°
Transitional	45°
Fresh	50°

The overall slope angle values applied account for the inclusion of pit access ramps at an appropriate width for the fleet size contemplated in the study.

4 PIT OPTIMISATION

Open pit optimisation work was undertaken to enable evaluation and shell selection on a total deposit basis. The shell selections were largely driven with a focus on maximising the available mineral inventory, together with a consideration of cost per ounce produced for the project as a whole. The optimisation process included all Indicated and Inferred resources and excluded unclassified material. Optimisations were completed using WHITTLE® software, which uses the Lerchs-Grossman and Pseudoflow algorithms to determine a range of optimal shells at varying metal prices. The program generates economic shells based on input parameters consisting of operating costs (mining & processing costs, royalties, selling costs), metallurgical recoveries, geological and geotechnical (slope) considerations. The optimal pit shells derived from the open pit optimisation are then used to develop open pit mine plans for the deposit.

A total of 48 shells were generated by the optimisation process at revenue factors (RFs) ranging from 0.3 to 1.5. The results are provided in Table 4-1. Shaded cells show the shells selected for further assessment.

Figure 4-1 provides the optimisation results graphically, highlighting the flat undiscounted cashflow profile. This profile is indicative of the sub-vertical orebody geometry and grade profile at the Project, with increasing revenue factor shells exhibiting a linear relationship with incremental increases in revenue being offset by a corresponding increase in costs due to increased waste and ore mining and relatively high strip ratios.

A major step-change visible in the optimisation profile occurs where the optimised shell expands from the high-grade core at the north-eastern end of the resource to include additional high-grade zones to the south-west, occurring at the RF0.9 shell. This results in the total tonnage of the pit shell increasing from 8.6 Mt to 13.8 Mt, and the corresponding strip ratio increasing from 30:1 to 35:1 indicating significantly more waste is being moved per tonne of ore mined. This shift produces a clear increase (+\$500 /oz) in the cost per ounce metric.

The pit shells selected for detailed pit design are shown in Figures 4-2 and 4-3. The scoping study contemplated the selection of the RF1.0 shell for the Swiftsure and Tiptoe pits, with a view to optimising the open pit shell selection and design in future studies.

The optimisation outcomes also highlighted the continuation of high-grade zones at depths below the open pits, which the study incorporates with underground optimisation and designs.

Table 4-1 Optimisation Shell Selections

	REVENUE FACTOR		TOTAL TONNES	TOTAL WASTE	STRIP RATIO	F	PROCESSED ORI		MINING COST	PROCESS COST	REVENUE	UNDISCOUNTED CASHFLOW	DISCOUNTED "BEST"	DISCOUNTED "WORST"	COST / OZ	Incremental
NUMBER	FACTOR	(\$/oz)	t	t	(w:o)	t	(g/t)	REC. AU (oz)	(\$M)	(\$M)	(\$M)	(\$M)	(\$M)	(\$M)	(\$)	Cost / oz
1	0.30	\$ 1,500.0	4,333,383	4,171,857	25.83	161,526	5.82	29,330	21.6	14.9	146.7	106.6	96.7	96.7	1,242.1	1,242.1
2	0.36	\$ 1,800.0	4,668,274	4,498,594	26.51	169,681	5.82	30,802	23.2	15.6	154.0	111.3	100.9	100.8	1,260.5	1,625.8
3	0.38	\$ 1,900.0	4,761,421	4,589,320	26.67	172,101	5.81	31,169	23.7	15.8	155.8	112.4	101.9	101.8	1,267.4	1,854.4
4	0.40	\$ 2,000.0	4,761,593	4,589,320	26.64	172,273	5.80	31,178	23.7	15.8	155.9	112.5	101.9	101.8	1,267.6	1,884.4
5	0.44	\$ 2,200.0	4,957,781	4,783,272	27.41	174,509	5.84	31,785	24.7	16.1	158.9	114.2	103.4	103.3	1,281.0	1,969.4
6	0.48	\$ 2,400.0	5,084,293	4,904,960	27.35	179,333	5.77	32,285	25.4	16.5	161.4	115.5	104.4	104.2	1,298.5	2,407.2
7	0.52	\$ 2,600.0	5,213,230	5,029,327	27.35	183,904	5.70	32,715	26.0	16.9	163.6	116.5	105.3	105.0	1,313.3	2,428.8
8	0.54	\$ 2,700.0	5,219,303	5,035,224	27.35	184,079	5.70	32,734	26.1	16.9	163.7	116.6	105.3	105.1	1,314.0	2,575.7
9	0.56	\$ 2,800.0	5,223,851	5,039,419	27.32	184,432	5.70	32,754	26.1	17.0	163.8	116.6	105.4	105.1	1,314.9	2,686.6
10	0.58	\$ 2,900.0	5,263,326	5,078,549	27.48	184,777	5.70	32,836	26.3	17.0	164.2	116.8	105.5	105.2	1,318.5	2,742.4
11	0.64	\$ 3,200.0	5,296,184	5,110,723	27.56	185,461	5.69	32,914	26.5	17.1	164.6	116.9	105.6	105.3	1,322.2	2,920.8
12	0.66	\$ 3,300.0	7,564,403	7,323,188	30.36	241,216	5.03	37,826	37.0	22.2	189.1	125.2	111.7	109.0	1,564.9	3,190.7
13	0.68	\$ 3,400.0	7,776,376	7,527,691	30.27	248,685	4.94	38,337	38.0	22.9	191.7	126.0	112.2	109.1	1,588.7	3,348.6
14	0.70	\$ 3,500.0	8,013,729	7,753,608	29.81	260,121	4.82	39,066	39.5	23.9	195.3	127.0	112.8	109.0	1,623.4	3,451.5
15	0.74	\$ 3,700.0	8,068,325	7,806,653	29.83	261,672	4.80	39,184	39.8	24.1	195.9	127.2	113.0	109.1	1,629.0	3,463.7
16	0.78	\$ 3,900.0	8,085,023	7,822,833	29.84	262,190	4.80	39,220	39.8	24.1	196.1	127.2	113.0	109.1	1,630.8	3,675.9
17	0.80	\$ 4,000.0	8,262,092	7,994,962	29.93	267,130	4.75	39,563	40.7	24.6	197.8	127.6	113.2	109.0	1,650.0	3,837.0
18	0.82	\$ 4,100.0	8,335,116	8,063,378	29.67	271,738	4.69	39,757	41.0	25.0	198.8	127.8	113.2	108.8	1,661.3	3,976.5
19	0.84	\$ 4,200.0	8,351,749	8,079,149	29.64	272,599	4.68	39,799	41.1	25.1	199.0	127.8	113.2	108.8	1,663.9	4,060.7
20	0.86	\$ 4,300.0	8,353,099	8,080,187	29.61	272,912	4.68	39,807	41.1	25.1	199.0	127.8	113.2	108.7	1,664.4	4,090.1
21	0.88	\$ 4,400.0	8,588,317	8,307,744	29.61	280,573	4.60	40,274	42.4	25.8	201.4	128.1	113.3	108.4	1,694.4	4,256.5
22	0.90	\$ 4,500.0	13,792,225	13,407,345	34.84	384,880	4.15	49,833	74.0	****		133.5	116.1	105.8	2,196.0	4,309.2
23	0.92	\$ 4,600.0	14,256,192	13,864,085	35.36	392,107	4.13	50,521	76.4	36.1	252.6	133.8	116.3	105.6	2,226.8	4,456.7
24	0.94	\$ 4,700.0	14,506,945	14,110,257	35.57	396,688	4.11	50,897	77.7	36.5		133.9	116.3	105.3	2,244.1	4,580.6
25	0.96	\$ 4,800.0	14,613,495	14,213,288	35.51	400,206	4.09	51,077	78.2	36.8	255.4	133.9	116.3	105.1	2,252.5	4,614.7
26	0.98	\$ 4,900.0	14,860,719	14,451,928	35.35	408,792	4.04	51,502	79.4	37.6	257.5	134.0	116.2	104.5	2,272.8	4,712.6
27	1.00	\$ 5,000.0	14,861,251	14,452,290	35.34	408,961	4.04	51,505	79.4	37.6	257.5	134.0	116.2	104.5	2,273.0	4,876.8

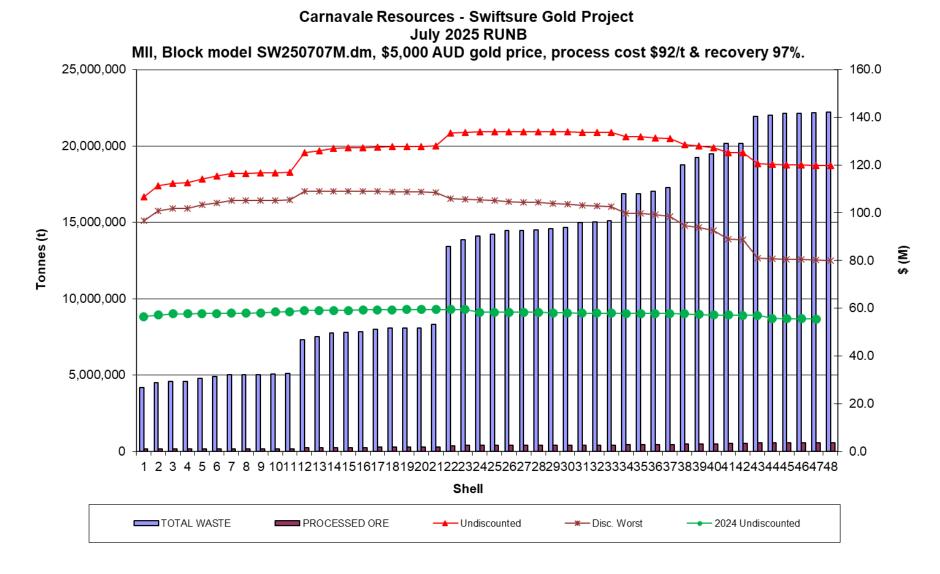


Figure 4-1 Kookynie Tonnage/Cash Flow Chart

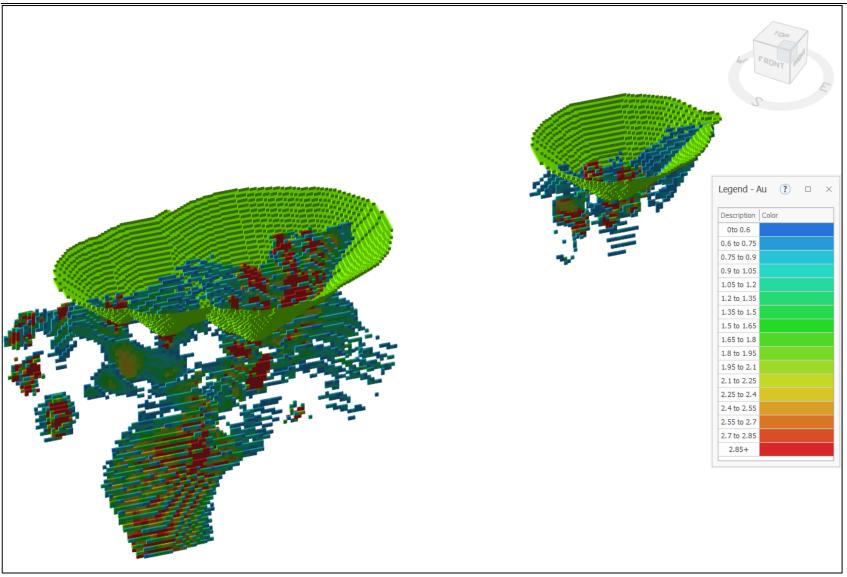


Figure 4-2 Isometric View of Pit Shells Selected for Design.

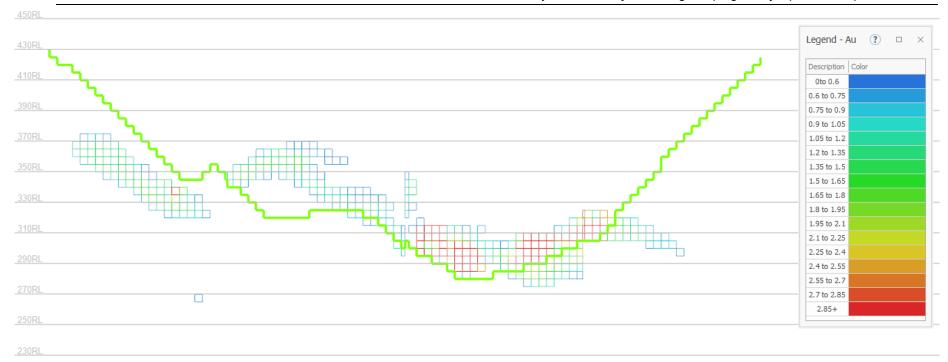


Figure 4-3 East-West Cross Section view of Swiftsure Pit Shell Selected for Design.

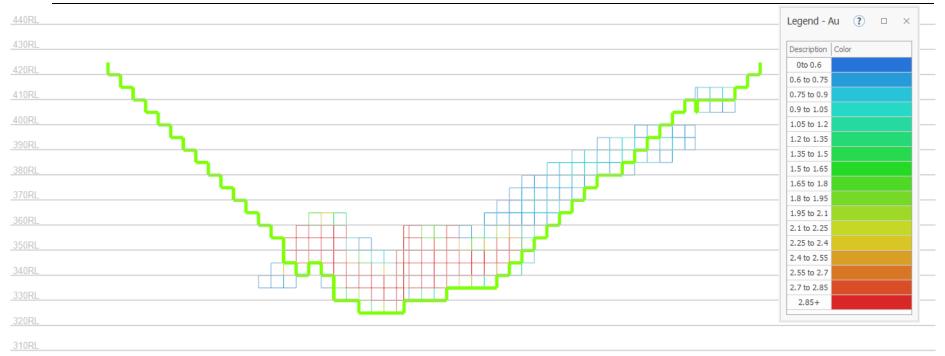


Figure 4-4 East-West Cross Section view of Tiptoe Pit Shell Selected for Design.

5 PIT DESIGNS

Detailed open pit designs were produced targeting the selected optimisation pit shells. The design criteria for the pit wall designs are shown in Table 5-1, with the ramp design criteria shown in Table 5-2 assuming mining will be carried out with small articulated trucks.

Table 5-1 Pit Design Parameters

Pit	Material	Batter Height (m)	Batter Angle (°)	Berm Width (m)
	Colluvium/Oxide	15	60	4
Tiptoe (RF1.00)	Transitional	20	65	4
	Fresh	20	70	4
	Colluvium/Oxide	15	60	4
Swiftsure (RF1.00)	Transitional	20	65	4
	Fresh	20	70	4

Table 5-2 Ramp Design Parameters

Description	Units	Value
Ramp Width - Dual lane	m	15
Ramp Width - Single lane	m	10
Gradient	1:x	10

Single lane ramps have been designed at the pit bottoms to improve overall strip ratios and reduce waste movement, however the majority of the pit tonnage will be extracted using dual lane ramps.

Typically, detailed designs introduce additional waste material due to the need to provide mining equipment access via ramps and at the pit bottom. Additionally, some wall smoothing occurs during the design process.

The Swiftsure pit has been designed to facilitate simultaneous open pit and underground access, to improve underground development timing and reduce the lag between completing the Swiftsure pit and beginning production stoping in the underground mine.

Overall variances between the detailed designs and optimisation shells are within acceptable ranges, particularly considering the relatively small pits and thus the outsized impact of introducing wall smoothing and access ramps compared to what is typical in larger pits. The design process focussed on minimising waste movement while adhering to the optimisation shells as far as practicable. Areas of the pit bottoms that fell below minimum mining widths were excluded from the design and are intended to form crown pillars to the underground mine.

Plan views of all pit designs are shown in Figure 5-1: Swiftsure Pit Design. and Figure 5-2. The detailed design and optimisation shell inventories are compared in Table 5-3 Swiftsure Pit Design vs Optimisation.

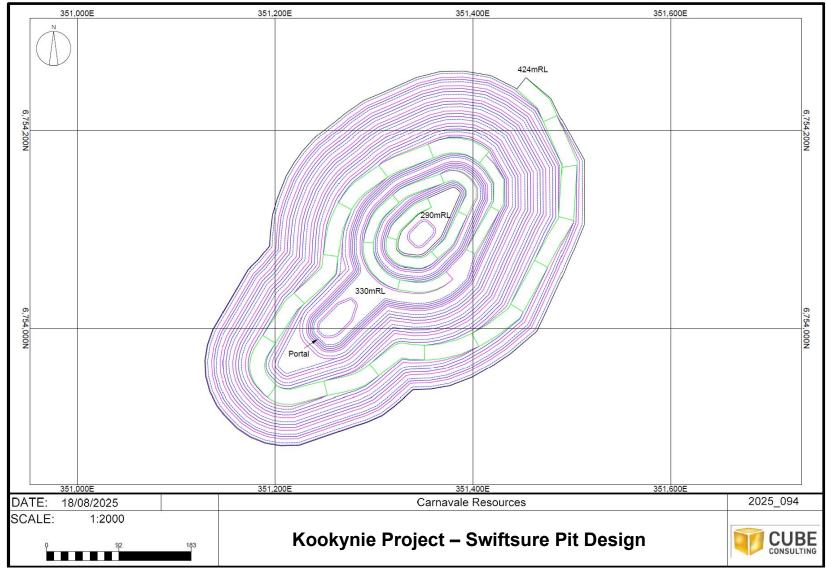


Figure 5-1: Swiftsure Pit Design.

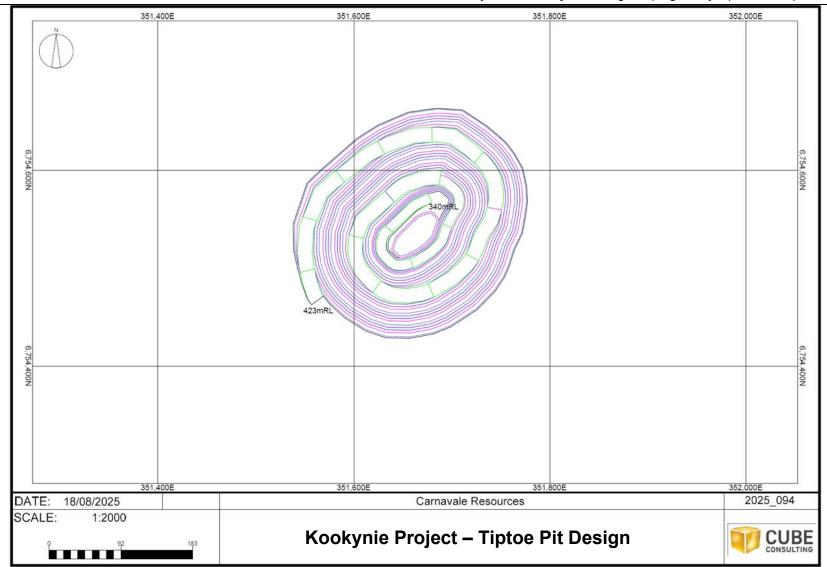


Figure 5-2: Tiptoe Pit Design.

Table 5-3 Swiftsure Pit Design vs Optimisation.

	Pit Design Inventory				Pit Optimisation Shell Inventory			Variance				% Variance								
Pit	Total Tonnes	Waste Tonnes	Ore Tonnes	Ore Grade	Ounces	Total Tonnes	Waste Tonnes	Ore Tonnes	Ore Grade	Ounces	Total Tonnes	Waste Tonnes	Ore Tonnes	Ore Grade	Ounces	Total Tonnes	Waste Tonnes	Ore Tonnes	Ore Grade	Ounces
	t	t	t	g/t	oz	t	t	t	g/t	oz	t	t	t	g/t	oz	t	t	t	g/t	oz
Swiftsure	12,752,000	12,446,600	305,400	4.32	42,417	11,806,000	11,471,400	334,600	4.34	46,688	946,000	975,200	-29,200	-0.02	-4,271	108%	109%	91%	100%	91%
Tiptoe	3,208,000	3,134,600	73,400	2.29	5,404	2,883,000	2,794,800	88,200	2.34	6,636	325,000	339,800	-14,800	-0.05	-1,232	111%	112%	83%	98%	81%

6 UNDERGROUND INPUT PARAMETERS

As noted in Section 4 of this report, the open pit optimisation process provided an indication that potentially economic material remained in the Swiftsure resource beneath the pit shells. To assess this potential, an underground optimisation process was undertaken, considering the following scenario:

 Underground mining of financially viable resources beneath Swiftsure Pit, accessed from within the Swiftsure pit.

Revenue and processing inputs were carried over from the open pit optimisation. Underground-specific operating costs were estimated by Cube based on comparable operations within the Western Australian goldfields. A detailed contract tender process was not considered to be of any significant benefit at this stage of the study process.

Input parameters were used in completing underground optimisations using Deswik.SO® stope optimisation software, which utilises a cut-off grade in combination with spatial and geometric constraints to generate optimised stope wireframes meeting those constraints. The optimal stope wireframes derived from the optimisation are then used to design underground access development to extract the deposit. The sections below discuss the parameters used in the stope optimisation process.

VALUE

All dollars quoted are in Australian dollars unless otherwise specified.

6.1.1 **Key Optimisation Inputs**

Key inputs relating to processing costs, revenue and other costs are shown in Table 6-1.

UNITS

Table 6-1 Key Optimisation Inputs

INPUT

AUD Gold Price	\$/oz	5,000		
Gold Recovery		97.0%	1	
Gold Royalty		2.50%	1	
Cold Payers	\$/oz	4,875	1	
Gold Revenue	\$/g	156.7		
		TOTAL COSTS	STOPING COSTS	TRANSPORT & PROCESSING ONLY
Mining Operating Costs	\$/t ore	194.50	84.50	17.00
Stoping	\$/t ore	50.00	50.00	
Lateral Operating Development	\$/t ore	110.00		
Geology	\$/t ore	2.50	2.50	
Mine Services	\$/t ore	15.00	15.00	
Mine Overheads & LV's	\$/t ore	2.00	2.00	2.00
Surface Road Haulage to Plant	\$/t ore	15.00	15.00	15.00
Processing	\$/t ore	65.00	65.00	65.00
General & Administration	\$/t ore	5.00	5.00	5.00
TOTAL OPERATING COST	\$/t ore	264.50	154.50	87.00

The optimisation process requires a Minimum Mining Width (MMW) to be specified to govern the width of the stopes created. While the Swiftsure resource model includes block resolutions down to $0.5 \,\mathrm{m} \times 0.5 \,\mathrm{m} \times 0.5 \,\mathrm{m}$, nominating an MMW value of $0.5 \,\mathrm{m}$ is unrealistic for typical mechanised drill and blast stoping operations. For the purposes of this study, an MMW of $1.0 \,\mathrm{m}$ has been applied. Stope widths in this range, and slightly narrower, are operationally achievable with standard mining practices. This width is also appropriate given the sub-vertical orientation of the Swiftsure orebody, which means that blast hole drilling should not be excessively impacted by the deviation generally observed when drilling and stoping at flatter angles.

A sub-level spacing of 22.5m (vertical, floor-to-floor) was applied for the optimisation process. This spacing was nominated based on the sub-vertical orientation of the orebody and reflects a drill hole length requirement within the capacity of the drilling equipment and consumables likely to be employed for the style of stoping required.

6.1.2 Mining Dilution and Ore Loss

To ensure that the outputs generated by the underground optimisation process reflected an appropriate level of detail, the process utilised the base resource model, and not the regularised model used for the open pit optimisation, as underground mining methods are capable of affecting selective extraction at smaller SMU block sizes than the block size nominated for open pit mining. Applying the base resource model ensures that the stope wireframes generated reflect the underlying resource model to an appropriate level of selectivity.

As the resource model used does not include any dilution or ore loss adjustment, these factors were accounted for during the optimisation process. Dilution was incorporated into the optimisation process by applying 0.5m skins to both hangingwall and footwall surfaces of the optimised shapes. This additional material generally has zero grade attributed to it and reflects the application of generally acceptable drilling and blasting practices across both design and operating practices. When combined with the previously defined MMW value of 1.0m, the additional dilution effectively creates a minimum stope width of 2.0m.

Ore loss or mining recovery reflects the effectiveness with which blasted ore is recovered from stoping areas, accounting for both operating factors such as physically bogging the ore from stopes, as well as designed ore loss through leaving of pillars for stope stability.

Operational recovery was estimated at 95%, based on the likely stopes being narrow and without any significant deviations along strike. In simple geometry situations such as that, bogging recovery is typically high, even with the use of tele-remote operations.

An additional 10% ore loss was incorporated to account for anticipated rib pillars during stope extraction. While no detailed underground geotechnical assessment had been undertaken at the time of the study, an allowance for a 2.5m (along strike) rib pillar every 20m along strike was considered to be an appropriate pillar factor on the basis that the orebody is sub-vertical and narrow.

The overall mining extraction parameters applied are outlined in Table 6-2.

Table 6-2 Optimisation Parameters Applied

OPTIMISATION PARAMETER	VALUE
Minimum Mining Width	1.0m
Sub-level Spacing	22.5m
Dilution Allowance - Hangingwall	0.5m
Dilution Allowance - Footwall	0.5m
Mining Recovery (Operational + Rib Pillars)	85%

Given the structural nature of the mineralisation, no additional significant operational factors are anticipated during standard mining activities which would typically result in operational ore loss.

These assumptions are intended to reflect the fact that detailed work on these inputs has not been carried out. It is Cube's opinion that these parameters represent a conservative estimate, and it is reasonable to expect some improvement in these parameters can and will be achieved in further detailed studies.

6.1.3 **Mining Costs**

Underground development, load and haul, and drill and blast costs were estimated by Cube based on previously run high level models and are revised from the previous Scoping Study. These unit costs reflect a "total cost" contract mining base, inclusive of all personnel, plant and materials costs. The applied costs used are shown in Table 6-3.

Table 6-3 Mining Costs

ACTIVITY	DESCRIPTION			TOTAL UNIT COST
Lateral Development		Development Unit Cost	Ground Support Unit Cost	
Ore Drive / Waste Strike Drive	4.5mW x 4.5mH Square	\$4,500 /m	\$1,300 /m	\$5,800 /m
Stockpile	5.0mW x 5.0mH Arched	\$4,600 /m	\$1,400 /m	\$6,000 /m
Decline	5.0mW x 5.2mH Arched	\$4,800 /m	\$1,500 /m	\$6,300 /m
Level Access	5.0mW x 5.0mH Arched	\$4,600 /m	\$1,400 /m	\$6,000 /m
Return Air Drive	5.0mW x 5.0mH Arched	\$4,600 /m	\$1,400 /m	\$6,000 /m
Escapeway Access	5.0mW x 5.0mH Arched	\$4,600 /m	\$1,400/m	\$6,000 /m
Sump	5.0mW x 5.0mH Arched	\$4,600 /m	\$1,400 /m	\$6,000 /m
Vertical Development				
Primary Exhaust Raisebore	Optional	Rise B/T into Pit		\$8,000 /m
Internal Exhaust Rise	4m x 6m Rectangle			\$4,000 /m
Escapeway Rise	1.5m Diam. Raise Bore			\$2,500 /m
Production Drill & Blast				
Stope Drilling	4.0 stope t/drill m			\$55.00 /m
Stope Charging	90% charge factor			\$45.00 /m
Slot Rising	18m slot every 3,000 stope t			\$1,500 /m
Stope Production Loading				
Stope Bogging - Manual	30% of stope t			\$16.00 /t
Stope Bogging - Remote	70% of stope t			\$18.00 /t
Truck Haulage				
Stope Haulage	2.5km haul distance			\$5.00 /t.km
Development Haulage - Waste	2.5km haul distance			\$5.00 /t.km
Development Haulage - Ore	2.5km haul distance			\$5.00 /t.km

A monthly cost allocation of \$65,000 was also incorporated for the provision of electrical power through diesel generator sets on a rental / hire basis.

6.1.4 Processing Costs and Recovery

The underground optimisation applied the same processing parameters as used in the open pit optimisation, being a processing cost of \$65 per tonne processed, and a processing recovery of 97%.

6.1.5 Capital Costs

The capital cost inputs considered for an underground continuation are based on retaining the infrastructure capital accounted for by the open pit, with additional capital expenditure added to address the infrastructure requirements of an underground mine. The capital cost items accounted for in the evaluation are provided in Table 6-4.

Table 6-4 Capital Cost Items

COST ELEMENT	VALUE (\$)
Primary ventilation fan and associated equipment	\$750,000
Secondary ventilation fans	\$250,000
Air compressor	\$100,000
Dewatering infrastructure ("Travelling Mono" pumps)	\$600,000
Electrical infrastructure	\$1,000,000
TOTAL	\$2,700,000

Additional capital (\$70,000) has been included to provide for the installation of additional ground support around the underground portal location.

As noted in the open pit evaluation, the likely short duration of the project suggests that some of the items designated as capital would likely be addressed either through hire / rental agreements or included in the scope of supply for a mining contractor. For the purposes of this investigation, however, they have been treated as capital costs for the owner.

6.1.6 Cut-off Grade Calculation

A treatment plant breakeven cut-off grade was calculated to demonstrate a theoretical break-even point within the resources. A theoretical, calculated cut-off was determined by:

$$Cut - off Grade (Au g/t) = \frac{Total Ore Costs}{Metal Price x (1 - Royalty)x Recovery}$$

Where: Total Ore Costs = Processing and all ore related costs (\$/t)

Metal Price = Gold price (\$/g)

Royalty = State Royalty plus land title royalty (%)

Recovery = Metallurgical Recovery (%)

Three cut-off grades were calculated, reflecting the three cost increments noted in Table 6-1. These increments represent:

Total cut-off – accounts for all operating, processing and general and administrative (G&A) costs.

- Stoping cut-off considers only costs associated with stoping, process and G&A costs.
- Transport and processing cut-off provides an incremental cut-off grade where material is incidentally
 mined in the process of accessing another mining block. This is also considered as the development
 cut-off grade.

The resultant cut-off grades are provided in Table 6-5.

Table 6-5 Cut-off Grade Calculations

		TOTAL COSTS	STOPING COSTS	TRANSPORT & PROCESSING ONLY
Total Operating Costs	\$/t ore	264.50	154.50	87.00
Total Cut-off	g/t Au	1.74		
Stoping Cut-off	g/t Au		1.02	
Development Cut-off	g/t au			0.57
Applied Optimisation Cut-off	g/t Au	n/a	1.50	0.6

For the purposes of the Deswik.SO® optimisation process, a rounded-up stoping cut-off grade of 1.5g/t Au was applied. Additional stoping material from 1.0 g/t was included where development would already pass by along strike to access the higher cut-off grade stopes. The rounded-up development cut-off grade of 0.6g/t was applied in subsequent design and scheduling processes to evaluate material mined during development of stoping areas. It is not directly applied in the optimisation process.

6.1.7 **Geotechnical Parameters**

At the time of the optimisation process, a detailed underground geotechnical assessment for the project had not been completed. Cube has applied a set of estimated geotechnical and ground control parameters for the purposes of the study aligned with conditions generally observed regionally. These parameters include:

- Development support regimes based on friction style bolts spaced at approximately 1.0m centres, with a ring spacing of approximately 1.5m, including bolting of side walls.
- Surface support (nominally 100mm x 100m galvanised mesh) for all development profiles, with mesh extending to no more than 3.0m from the drive floor.
- 6.0m long fully grouted cablebolts installed in a 1.5m square grid pattern for all development intersections.
- 2.5m rib pillars left unmined between stope panels of no more than 20m along strike (10% mining recovery reduction).

No specific allowance has been made in the study for structural filling of stope voids. It is, however, anticipated that voids would be backfilled with waste from development operations where appropriate as a means on maximising the efficiency of development haulage.

The extraction sequencing applied to stoping activities was a simple retreat to a Swiftsure access pillar, with a predominantly top-down progression.

These assumptions are intended to reflect the fact that detailed work on these inputs has not been carried out. It is Cube's opinion that these parameters represent a conservative estimate, and it is reasonable to expect some improvement in these parameters can and will be achieved in further detailed studies.

7 UNDERGROUND OPTIMISATION

The underground optimisation process for the Project was based on a scenario whereby the underground mine would be accessed via a portal within the Swiftsure pit. Optimised stope wireframes contained within and immediately below the Swiftsure pit were removed from the evaluation process to reflect any material mined by surface mining operations.

The optimisation process was undertaken on the complete Swiftsure block model, including all resource categories. This was to ensure that the creation of optimised stope wireframes was not compromised due to the optimisation process being setup to exclude resource classifications outside of Indicated and Inferred classes. The results reported from the optimisation process, however, only include Indicated and Inferred Resources. Stopes in oxide material or within any proposed open pit designs were also excluded from the results reported for the underground scenario.

Figure 7-1 through to Figure 7-5 show the main distribution of optimised stopes at the north-eastern end of the resource, below the pit shells previously generated. Similarly, stope wireframes have been generated encompassing the higher-grade areas to the south-west, previously driving the extension of pit shells at higher revenue factors.

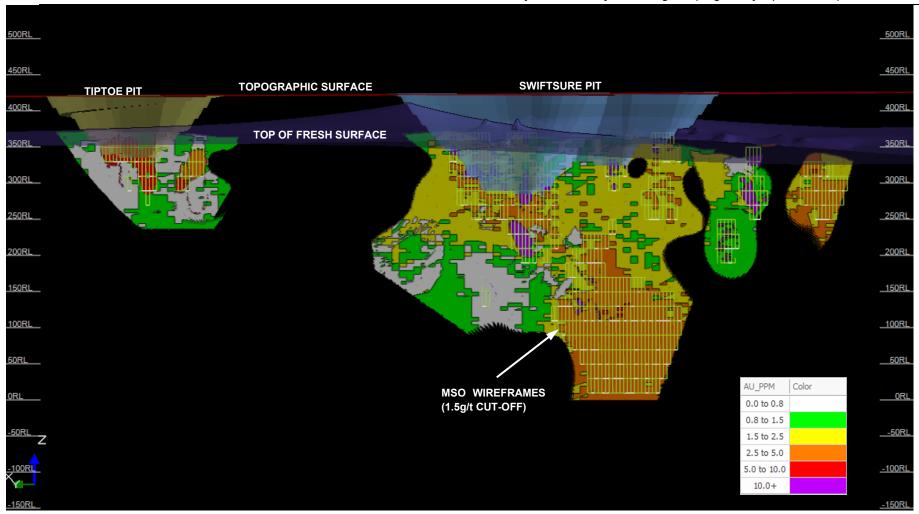


Figure 7-1 Long Section Looking East of Optimised Wireframes and Grade Coded Model

Kookynie Gold Project Mining Scoping Study Update – September 2025

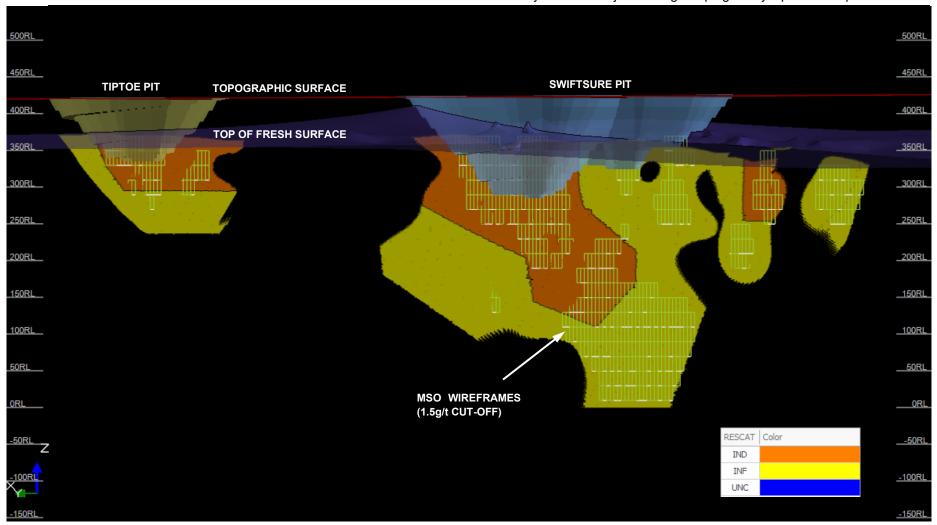


Figure 7-2 Long Section Looking East of Optimised Wireframes and Resource Category Coded Model

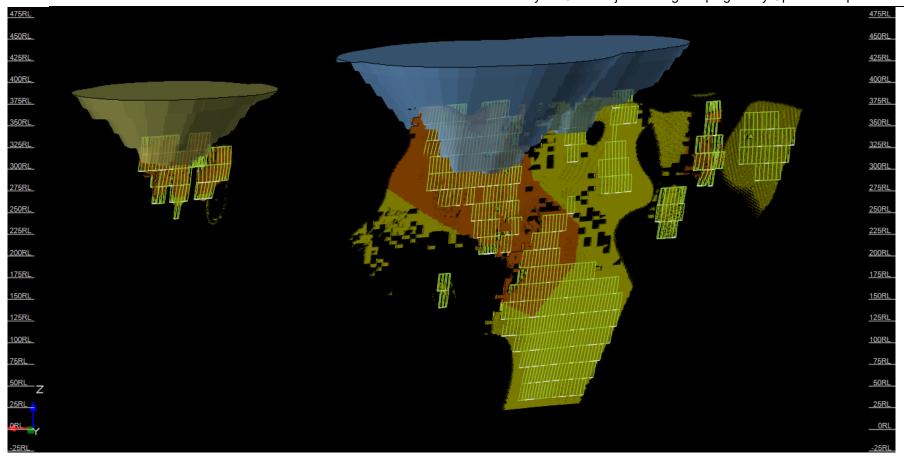


Figure 7-3 Isometric View of Optimised Wireframes Against Resource Model (1.5g/t Cut-off) by Rescat

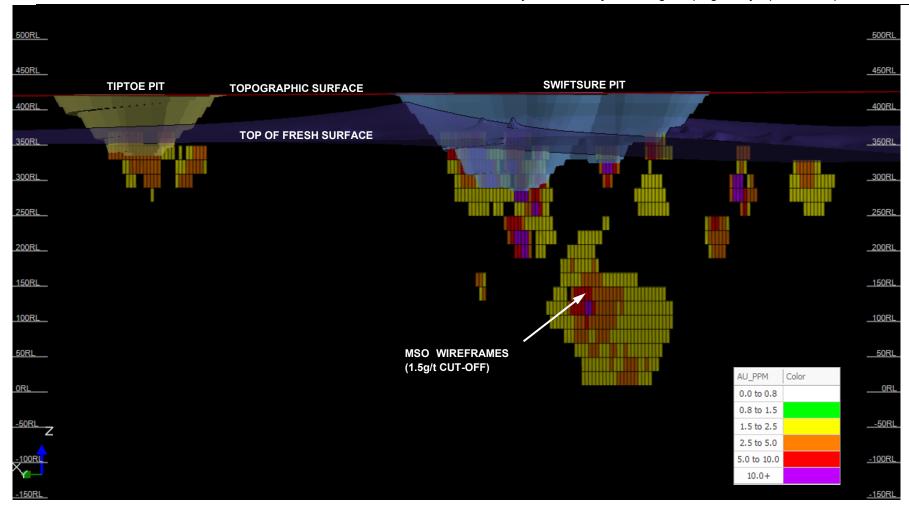


Figure 7-4 Long Section Looking East Showing Optimised Wireframes Coloured by Grade

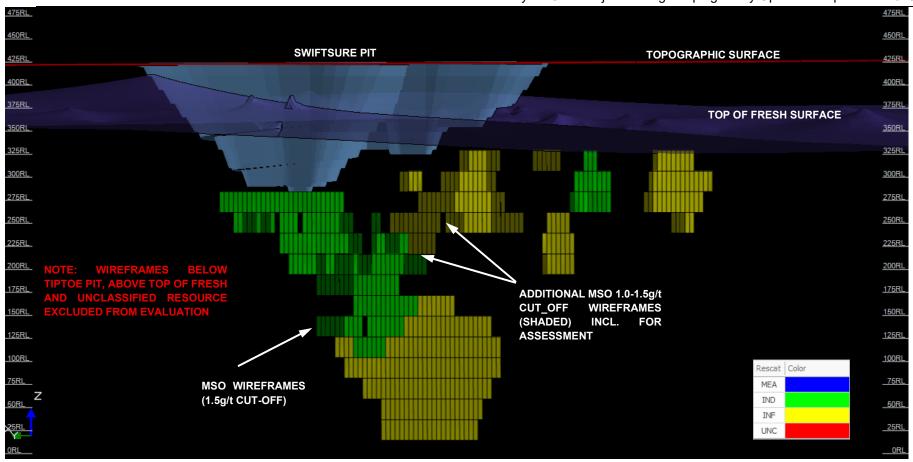


Figure 7-5 Long Section Looking East Showing Optimised Wireframes Coloured by Resource Category incl. additional material assessed.

8 UNDERGROUND DESIGNS

The underground design was generated targeting the optimisation stope wireframes and utilising a take-off point within the Swiftsure Pit.

8.1 Open Pit Portal Access

A preliminary review of the detailed open pit design and the optimised stope wireframes was completed to determine a suitable position for the underground access point. A suitable position for the portal was determined at the 330mRL in the southwestern pod within the Swiftsure pit. Some minor adjustments to the Swiftsure pit design were made prior to finalisation, in order to provide suitable working space for positioning the required infrastructure and equipment to commence development operations. It will be possible to position support services such as power, water and compressed air at the top of the pit and reticulate those services down the pit wall. The key element will be the ventilation fan required for development. This is typically a seacontainer mounted unit, which will need to be accommodated away from any haulage still taking place from the pit once development commences.

The decline development take-off point is orientated perpendicular to the pit wall, with additional portal ground support accounted for as part of the capital cost estimate.

8.2 Access Development

The underground development profiles applied for the design are as outlined previously in Table 6-3.

Access was designed utilising conventional 1 in 7 gradient decline development, with level accesses at 22.5m vertical intervals. The main decline development was offset approximately 60m horizontally to the footwall side of the stoping areas. This ensured the decline development was positioned away from potential stoping induced deterioration of ground conditions. The offset also provides space for a level-based stockpile for truck loading and remote bogging operations

8.3 Emergency Egress

The emergency egress system would comprise a system of rises located opposite each level, alongside the primary ventilation system. Each 1.5m diameter rise is equipped with ladderways to facilitate personnel egress between levels. This system would be supplemented by mobile refuge chambers positioned throughout the mine to provide a safe location for personnel in an emergency situation.

8.4 Ventilation

A return airway access is positioned on the backside of the figure-8 decline opposite each level access. These airway accesses are linked through as series if vertical rises constructed from a 1.5m raise bore stripped out to 4.0m x 6.0m with the uppermost rise breaking through to the surface via the open pit on bench at 355rl. A primary fan system would be positioned underground at the base of this rise to create a ventilation circuit that draws fresh air down the access decline before being exhausted via the return airway.

Secondary ventilation of working areas would be addressed via secondary ventilation fans positioned in the main decline above exhaust ways and forcing fresh air to the work area through flexible ventilation ducting, before it then exits the level and down to the nearest return air access.

No detailed ventilation circuit modelling has been completed for this study as the general circuit layout is not considered to present any significant issues in terms of providing the required volume flows through the mine for an operation of this size.

8.5 Dewatering

No detailed hydrological studies have been completed for the project at this stage. Allowance has been made for regular sumps along the decline, with 2-3 staged "Travelling Mono" style pump units considered to be capable of managing the combination of mine process water and any groundwater inflows typically encountered in the Kookynie region. The underground dewatering system would discharge to a surface holding dam and recirculated as process water or for dust suppression as appropriate. Construction costs for a holding dam were accounted for in the surface establishment costs.

8.6 Mine Services

Electrical power is proposed to be provided by site-based diesel-powered generator sets or an equivalent alternative. This is most likely best addressed through a rental structure to minimise capital outlay. Power would be reticulated underground via staged sub-stations to ensure appropriate supply is provided in all working areas. The electrical supply circuit has not been detailed in this study.

Compressed air and mine water would be reticulated through the mine utilising standard poly pipelines. A compressor located on the surface will provide the required volumes of compressed air for mining operations.

A two-way radio communications system will be required throughout the underground mine and has been provided for in the capital cost estimates used.

8.7 Mining Operations

The development and production methods proposed for the project reflect those typically applied across the industry for similar operations.

Development operations would utilise twin boom development jumbos for both face drilling and ground support installation. Once development reaches production levels, a second jumbo may be beneficial, enabling one jumbo to focus on capital development headings, with the second is tasked with maximising ore drive advance. Loading of blasted face material would be undertaken with a 17-18t class loaders, loading 40-50t underground haul trucks.

The narrow stope widths for Swiftsure suggest production drilling would be most effectively provided by 64-76mm diameter blast holes.

Blasting operations within the mine are anticipated to employ standard ANFO or emulsion-based products and Nonel detonating systems. A single charge-up machine is considered to be capable of meeting the charge-up requirements in the mine, with a second toolcarrier based system available as a back-up unit.

Supporting services (air, water, ventilation, power, etc) would be installed and maintained using an integrated toolcarrier unit fitted with an appropriate working platform.

A detailed fleet assessment has not been undertaken at this level of study.

8.8 Mine Layouts

Isometric views of the open pit and underground designs are shown in Figure 8-1 and Figure 8-2, providing an overview of the arrangement of the open pits and the interaction with the underground mine.

Figure 8-3 provides a plan view of the typical level layout applied during the design process, illustrating the arrangement of the key underground mining infrastructure.

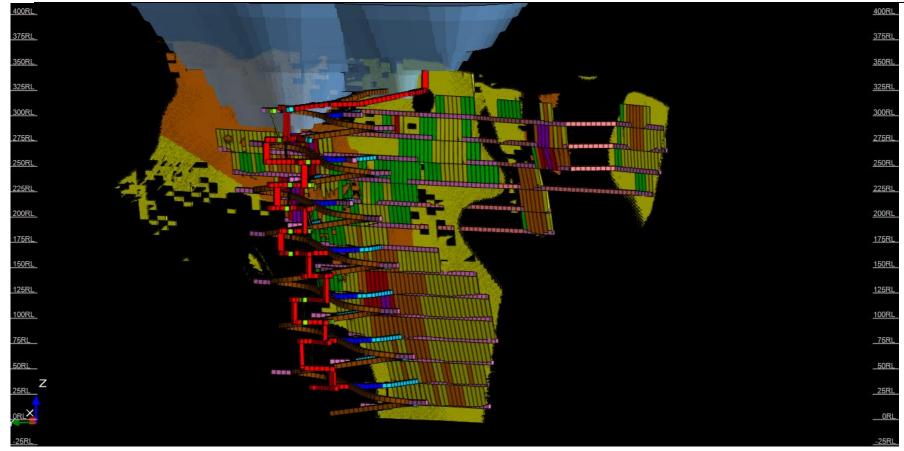


Figure 8-1 Isometric View of Swiftsure Pit to Underground Scenario Looking North-East

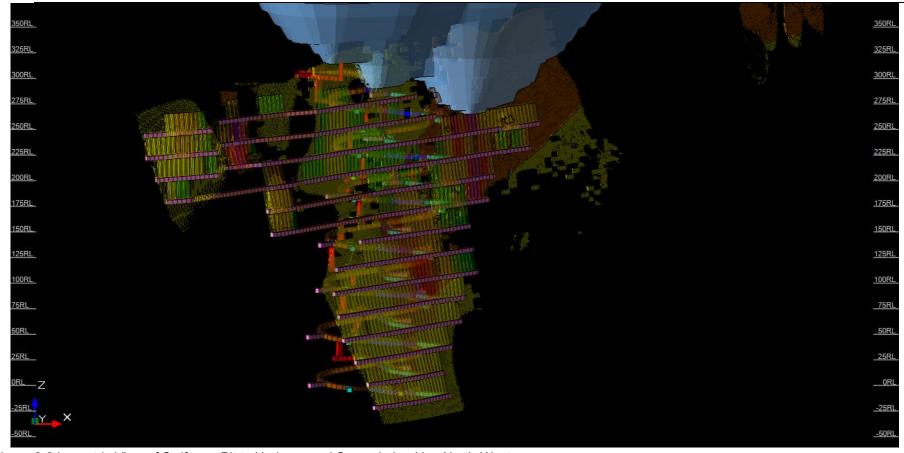


Figure 8-2 Isometric View of Swiftsure Pit to Underground Scenario Looking North-West

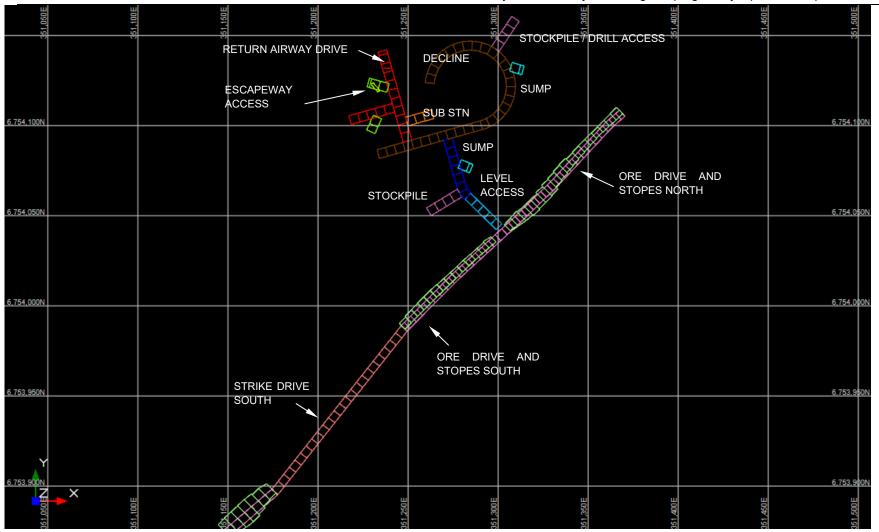


Figure 8-3 Plan View of Typical Level Layout

9 INTEGRATED PRODUCTION SCHEDULE

Cube completed an integrated mining production schedule using the detailed open pit and underground designs. For the underground mine, Cube completed a mining schedule using Deswik.IS® scheduling software. The key constraint during the scheduling process was ensuring that an appropriate mining rate was reflected. The general layout of the underground design does not necessitate any complex scheduling considerations, and this was reflected in the establishment of simple precedent / dependent relationships between development and production activities to ensure that the mine progressed in a logical sequence. For the open pits, Given the size of the Swiftsure pit designs, the key constraint during the scheduling process was ensuring that an appropriate vertical rate of advance constraint was followed. The simple conical geometry of the pits and lack of staging did not necessitate any complex scheduling considerations, and as such, spreadsheet scheduling was undertaken on the basis of basic bench sequencing. The vertical rate of advance was limited to one 5m bench per month, or 60m vertical per year.

The integrated schedule consists of the following elements (in order of sequence):

- Bench scheduling of the Swiftsure pit
- Deswik.IS® schedule for the underground mine
- Bench scheduling of the Tiptoe pit

Grade splits (low, medium, high, etc.) were not considered as part of the scheduling process as it is assumed that all ore mined will be hauled off-site for toll treating without delay. All material above a cut-off of 0.6g/t Au within the Indicated and Inferred resource categories was categorised as "ore", with all other material classed as "waste".

Grade splits (low, medium, high, etc.) were not considered as part of the scheduling process. All material above the stoping cut-off of 1.5g/t Au was considered "ore". Any additional lower grade 1.0 g/t - 1.5 g/t stopes encountered between pods of 1.5 g/t stopes was also considered. Development above the development cut-off of 0.6/t Au was categorised as "ore", with all other material classed as "waste".

9.1 Scheduling Constraints and Drivers

The integrated schedule begins with the commencement of the Swiftsure pit in month 1, with no pre-production or ramp up profile used in the schedule. The underground mine is scheduled to begin next in the sequence, followed by the Tiptoe Pit.

The major scheduling constraints in relation to practical underground mining are the progress of the Swiftsure pit development (which impacts the start of the underground schedule), development advance rate and the stoping production rate.

There is six months of overlap between commencement of the underground development and completion of the Swiftsure pit. The underground mine is scheduled to begin in month 23, at which point the Swiftsure pit is advanced to the 315mRL (15m below the underground access level on the 330mRL). Early underground establishment works are scheduled to coincide with open pit mining of the Swiftsure pit, and small volumes of waste produced from the underground development will be stockpiled and removed by the open pit fleet as part of open pit mining works. For scheduling purposes, initial decline ramp up was 30m / 50m / 80m for months 1/2/3 followed by a maximum decline development advance rate of 120m of development per month, with the maximum advance rate in a single development heading capped at 100m. Maximum total development per jumbo was 300m. In practice, the maximum monthly advance rate is rarely achieved due to the number of independent development headings available. A second jumbo was introduced from month seven.

The stope production rate is also of importance in narrow vein operations such as Swiftsure, as the narrow stopes typically have a very short production period as the result of their limited tonnages. For scheduling purposes, production from each stope was limited to 500t per day. This yielded stoping schedules across the scenarios with maximum stope production rates in the order of 12,000-15,000t per month, which Cube considers to be appropriate for this type of operation.

Open pit mining of the Tiptoe pit was scheduled to commence in month 44 and finish in month 61 along with cessation of the underground mine and therefore the end of the mine life.

Extensive iteration or schedule levelling was not undertaken as part of the scheduling process as that level of detail was not considered to present significant value at this level of study. Likewise, no schedule adjustments were applied to preference Indicated resources over Inferred resources within the production profile.

9.2 Schedule Results

The integrated schedule achieves extraction of a contained 970kt of ore feed over a 61-month period from the three sources. 306kt of ore at 4.31g/t Au is mined from the Swiftsure pit from months 1-29, 591kt at 2.56g/t Au is mined from the underground mine from months 23-61 and 73kt at 2.29g/t is mined from the Tiptoe pit from months 44-61. Combined, 970kt at 3.09g/t is mined in the schedule for a total mine production of 96,000 ounces. Total waste mined in the schedule is 16.4Mt.

Key schedule results are shown graphically in Figure 9-1 and Figure 9-2.

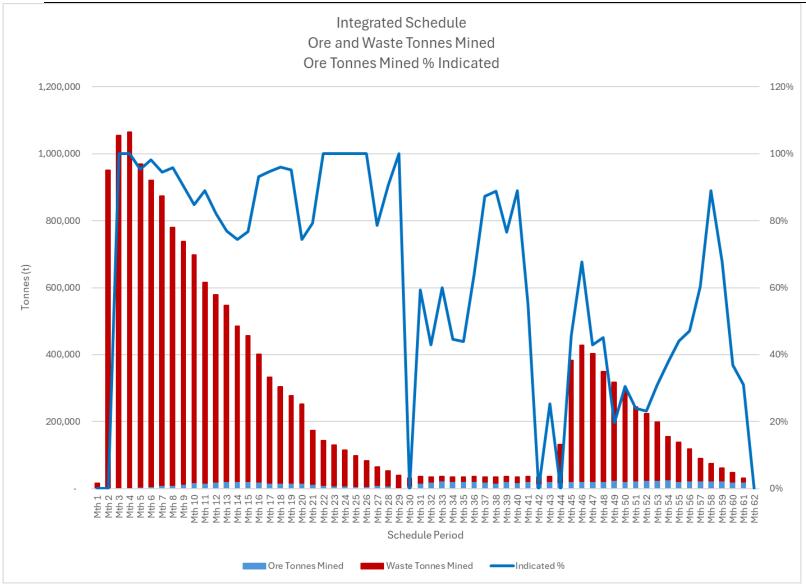


Figure 9-1 Integrated Schedule Ore & Waste Tonnes Mined

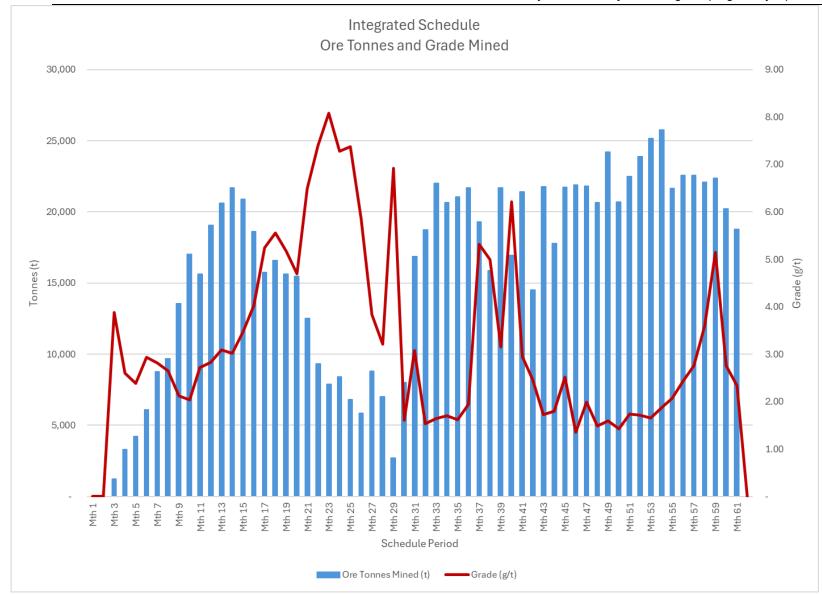


Figure 9-2 Integrated Schedule Ore Tonnes and Grade Mined

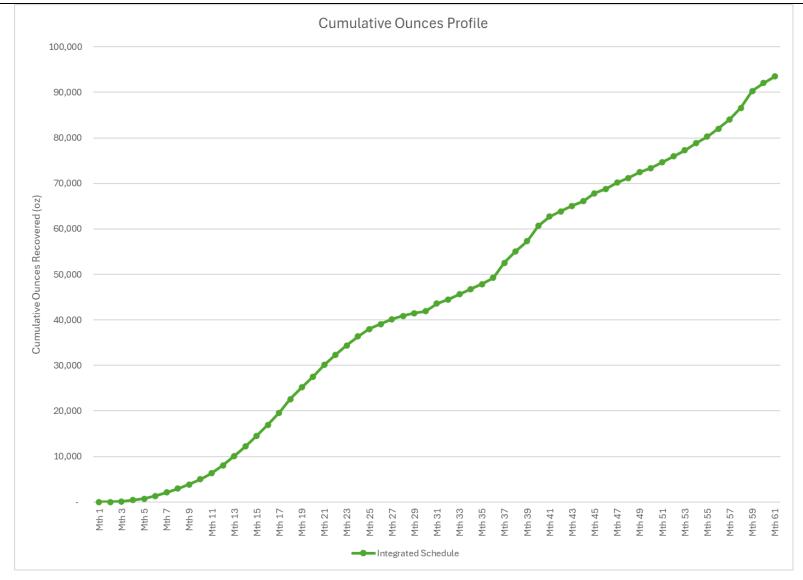


Figure 9-3 Integrated Schedule Cumulative Ounce Production

10 FINANCIAL EVALUATION

A financial evaluation of the operating scenarios proposed in the study was completed, applying the cost, processing and scheduling outputs generated.

For the purposes of calculating a Net Present Value (NPV) for the scenario, a gold price of AUD \$5,500/oz and a discount rate of 8% per annum was applied in combination with the schedule defined in section 9 of the study.

The outputs of the financial evaluation are provided in Table 10-2, with Figure 10-1 providing the cashflow profile for the scenario.

A sensitivity to gold price was run on the financial model using gold prices ranging from AUD \$4,000/oz to AUD \$6,500/oz. The results of this sensitivity analysis are shown in Figure 10-1.

Table 10-1 Gold Price Sensitivity Analysis

Au Price (AUD \$/oz)	Undiscounted Cashflow (\$M)	NPV (\$M)	Payback Period (Months)
4000	101	78	17
4500	146	115	16
5000	192	151	15
5500	237	188	14
6000	283	225	13
6500	328	261	13

Table 10-2 Financial Evaluation Outputs

ation Outputs		_	
LIFE OF MINE PHYSICALS SUM	MARY	Inte	grated Schedule DESIGN
Open Pit Physicals			DESIGN
Total Ore Tonnes (t)			379,285
Total Ore Grade (g/t)			3.92
Total Mined Ounces (oz)			47,832
Total Waste Tonnes (t)			15,945,067
Strip Ratio (w:o)			42.0
Hadardraund Physicals		_	
Underground Physicals Total Ore Tonnes (t)			590,684
Total Ore Grade (g/t)			2.56
Total Mined Ounces (oz)			48,555
Total Development Meters (m)			9,152
Total Vertical Meters (m)			935
Total Waste Tonnes (t)			485,863
Total waste folliles (t)			400,000
Combined Physicals			
Total Ore Tonnes (t)			969,969
Total Ore Grade (g/t)			3.09
Total Ounces (mined) (oz)			96,386
Total Waste Tonnes (t)			16,430,930
Processing			
Tonnes Processed (t)			969,969
Recovery	97%		
Recovered Ounces (oz)			93,495
LIFE OF MINE FINANCIALS SUM	MARY		
Open Pit Mining Cost		\$	89,375,945
Capital		\$	3,070,000
Operating		\$	86,305,945
\$/Oz			\$2,580
Underground Mining Cost		\$	97,050,110
Capital		\$	30,439,276
Operating		\$	66,610,834
\$/Oz			\$3,064
Processing Cost			
Processing and Transport Cost	\$80.00	\$	77,597,543
Total Project Cost		-	\$264,023,598
Mining Capital Costs (\$)			\$33,509,276
Mining Operating Costs (\$)			\$152,916,779
Process & Transport Costs (\$)			\$77,597,543
Cashflow (ex-Mining)			
Gold Price (\$/oz ex royalty)	\$ 5,3	63	
Mining Revenue (\$)	- 5,0		\$501,365,427
Mining Cashflow (undiscounted) (\$)			\$314,939,372
Project Duration (months)			61
NPV (\$)	8%		\$249,232,167
(4)	070		Ψ2 10,202,10
Cashflow (ex-Processing)			
Gold Price (\$/oz)	\$ 5,3	63	
Revenue (\$)			\$501,365,427
Cashflow (undiscounted) (\$)	DESIG	N	\$237,341,829
Project Duration (months)			61
Payback (months)			14.1
Maximum Negative Cashflow (\$)			-\$21,319,68
NPV (\$)	8%		\$187,954,998
IRR (NPV = 0)	0,0		165%
Cost per Ounce (\$/oz rec)			\$2,824
φοι σαιίου (ψιοΣίου)			4∠,0∠4
Total Operating Cost (\$) (excl. Capex)			\$230,514,322
Operating Cost per Ounce (\$/oz rec)			\$2,466

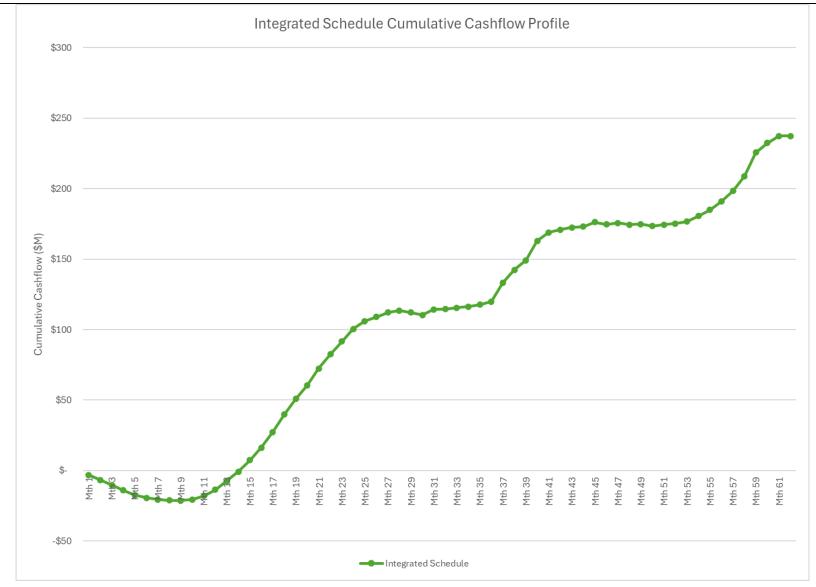


Figure 10-1 Open Pit to Underground Scenario Cashflow Profiles

11 SUMMARY

The analysis completed for this Scoping Study has demonstrated that there are reasonable grounds to justify the progression of the Kookynie Gold Project through to more detailed Study.

The project has been considered on the basis of open pit mining of two pits, transitioning to underground mining. The scenario has been evaluated through the application of data provided to Cube by Carnavale together with reasonable assumptions made reflecting the regional operating context for the Kookynie Project.

The evaluation process completed for the study generates 970,000t of ore mined at an average grade of 3.09g/t for a total of 96,000 ounces mined, yielding a Net Present Value of \$188 million over a 61-month operating duration with a 14-month payback period.

Appendix 1 JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Reverse Circulation (RC) drilling rig supplied by Challenge Drilling Pty Ltd. Diamond Drilling rig supplied by Topdrive Pty Ltd and Terra Drilling Ltd. RC Drilling was used to obtain 1m samples. 1m samples were submitted to the laboratory for analysis. Diamond drill core was sampled on 1m intervals except on geological boundaries and mineralisation where samples were a minimum of 20cm. Every 5th sample was analysed for multi elements. RC Samples submitted for analysis weighed approx. 3kg. Sampling and analytical procedures detailed in the sub-sampling techniques and sample preparation section.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Face sampling RC drilling achieved hole diameter size of (5 1/2 inch). Diamond Drilling was wireline retrieval and NQ2 size Holes were drilled at an angle of 60 degrees.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Sample recovery size and sample conditions (dry, wet, moist) were recorded. Drilling with care (e.g. clearing hole at start of rod, regular cyclone cleaning) if water encountered to reduce incidence of wet samples.

Criteria	JORC Code explanation	Commentary
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Logging carried out by inspection of washed cuttings at time of drilling. A representative sample was collected in plastic chip trays for future reference. Diamond drilling was logged geotechnically with the aid of Peter O'Bryan Associates Drill core was orientated and marked up with metre intervals and orientation line before sampling and logging.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Core was cut in half with an automated core saw. 1m samples were collected in pre-numbered calico bags. Samples weighed between approximately 2.5 - 3 kg. 1m samples collected in poly weave bags for dispatch to assay laboratory. Samples are dried (nominal 110 degrees Celsius), crushed and pulverized to produce a homogenous representative sub-sample for analysis. All samples are pulverised utilising ALS preparation techniques PUL-23. Diamond core was prepared with a jaw crusher prior to pulverizing. A grind quality target of 85% passing 75µm has been established and is relative to sample size, type and hardness. The sample size and sample preparation prior to analysis are considered to be appropriate for the expected mineralisation.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 RC and diamond samples were collected at ALS, Kalgoorlie. The samples were transported to the ALS facility in Perth by courier. Following the sample preparation outlined in the previous section above, samples were analysed by ALS using 4-Acid Digest & Assay [ME-MS61] plus a specific assay for Gold [Au-AA24 and Au-GRA22 for assays above 10g/t] by ALS laboratories in Brisbane. Gold intercepts are calculated with a 1g/t Au lower cut, no upper cut and no internal dilution. In addition to the Quality control process and internal laboratory checks Carnavale inserted standards and blanks at a rate of 1 to 20 samples. Standards were selected based on oxidation and grade relevant to the expected mineralisation. This process of QA/QC demonstrated acceptable levels of accuracy

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 A review of the assay data against the logged information by the field technician and geologist has been completed to verify intercepts. Internal laboratory standards are completed as a matter of course as well as introduced blind standards/CRM by the Company. Sample data was captured in the field and data entry completed. Sample data was then loaded into the Company's database and validation checks completed to ensure data accuracy. No twinned holes have been completed at this stage. No adjustments have been made to the assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill hole collars were surveyed using Topcon Hyper II GNSS base/rover kit (Easting and Northing values) of +-2cm. Grid System – MGA94 Zone 51.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Holes were drilled to target structural features identified in aeromagnetic survey and geochemical anomalies identified by previous aircore drilling. Holes were located accurately by Handheld GPS. The drill hole spacing is adequate to define Indicated and Inferred Mineral Resources as discussed in Section 3. RC Samples were collected on 1m intervals from a rig mounted cone splitter.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 No bias has been introduced from the sampling technique. Drilling has been designed to target the stratigraphy normal to bedding. Drilling data appears to locate the strike and approximate dip of structures. No direct structural measurements have been taken.
Sample security	The measures taken to ensure sample security.	 Samples were securely stored in the field and transported to the laboratory by an authorised company representative or an authorised transport agency.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits or reviews of sampling techniques and data completed.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Tenement package includes 4 granted exploration tenements (E40/355, P40/1480, P40/1380, and P40/1381). Carnavale (80%) has entered into a joint venture with Western Resources Pty Ltd (20%) on tenements E40/355 P40/1380 and. P40/1381 commencing after exercising an option agreement with Western Resources Pty Ltd. Western Resources Pty Ltd is free carried until completion of a Bankable Feasibility Study. Mining license M40/362 has been applied for. Carnavale owns 100% of P40/1480 A Program of Works was approved by DMIRS for exploration work in the area. The Nyalpa Pirniku people have the sole registered native title claim A heritage survey has been completed with no sites of significance identified.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Previous Exploration across the project area was limited to historic prospecting and small-scale mining with limited RAB/aircore drilling on wide spaced lines and only 2 RC holes drilled. The deepest historic hole was 108m downhole. Two historic programs of drilling were completed on E40/355, one in 2001 by Diamond Ventures NL in JV with Kookynie Resources NL which consisted of 41 aircore holes, plus 4 RAB holes and 2 RC holes. The second, earlier program was in 1997 by Consolidated Gold Ltd which consisted of 85 RAB holes and 50 aircore holes. Five historic holes were drilled in 2002 by Barminco-Kookynie Resources NL on P40/1380, immediately to the north of the McTavish Prospect Refer to WAMEX reports A065275 "Annual Report for the period ending 30th June 2002" by Kookynie Resources NL, 31 August 2002. Refer to WAMEX reports A66379 "Annual Report for the period ending 30th June 2002" by Kookynie Resources NL, 31 August 2002.

Criteria	JORC Code explanation	Commentary
Geology	Deposit type, geological setting and style of mineralisation.	 The deposit is Archean shear hosted gold mineralisation with associated supergene enrichment. The Swiftsure deposit sits within the Kookynie Mining centre, which lies astride a regional overlapping of ENE trending basic acid volcanics, sedimentary and BIFs partially stoped by medium-grained granite about 6 km in diameter; all rocks are of Achaean age. Gold mineralisation at the Swiftsure and Tiptoe deposits are associated with quartz veining on the contact between dolerite and granodiorite, with very high grades (bonanza, > 10 ppm Au) in continuous shoots in the core of the mineralised lodes that have subvertical plunge to about 150 m below surface, and then appear to plunge at about 60° to the southwest below 150 m
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Exploration results are not being reported here. Tables of collar locations and significant intercepts have been supplied in previously reported ASX announcements
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Exploration results are not being reported here. For previous ASX announcements, intercepts were reported as down-hole length and average gold intercepts were calculated with a 1g/t Au lower cut, no upper cut, no internal dilution. No metal equivalent values, or formulas were used.

Criteria	JORC Code explanation	Commentary
Relationship between mineralisati on widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. down hole length, true width not known'). 	 Exploration results are not being reported here. RC results were based on whole down-hole metres. True width not known. Diamond drilling samples were greater than 20cm and measured to the nearest centimetre to reflect geology and mineralisation.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Exploration results are not being reported here. Diagrams in previous ASX announcements showed all drill holes completed. Diagrams in this release show typical examples of the mineralisation.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Exploration results are not being reported here. All drilling results have been comprehensively reported in previous ASX announcements.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Historical drill programs have defined Au geochemical anomalies within the tenement package. Aeromagnetic data and geological mapping have been verified by drilling.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Planning has commenced on a follow up drilling to expand the extent of the Au mineralisation discovered in the drilling campaigns. In particular, possible depth and strike extensions will be tested.

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Data was geologically logged electronically into templated Excel spreadsheets and loaded directly into the database; collar and downhole surveys were also loaded electronically. Data was validated using Micromine software for errors in continuity. Laboratory analysis results were also directly loaded electronically into the database. These electronic files were loaded into OCRIS toolbox relational database. Data extracted from the database were validated visually in Datamine and Leapfrog software. In addition, when loading the data into the software any errors regarding overlaps and missing information are highlighted – there were no issues with the data provided.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 Humphrey Hale, the Competent Person for Sections 1 and 2 of Table 1 supervised all drilling programs conducted at Swiftsure (2020 - 2025). Michael Job, the Competent Person for Section 3 of Table 1 has not visited site.
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 The Swiftsure deposit sits within the Kookynie Mining centre, which lies astride a regional overlapping of ENE trending basic acid volcanics, sedimentary and BIFs partially stoped by medium-grained granite about 6 km in diameter; all rocks are of Achaean age. Gold mineralisation at Swiftsure is associated with quartz veining on the contact between dolerite and granodiorite, with very high grades (bonanza, > 10 ppm Au) in continuous shoots in the core of the mineralised lodes that have sub-vertical plunge to about 150 m below surface, and then appear to plunge at about 60° to the southwest below 150 m. The oxidized/transitional and fresh rock contact is about 40 to 60

JORC Code explanation	Commentary
	 m below surface. A 5 m thick layer of transported material overlies the deposit. Leapfrog software was used for the interpretation of the mineralised lodes and oxidation domains. Drilling in 2024 and 2025 discovered additional mineralised lodes (Lodes 3 and 4) that extend to the north of the main lode (Lode 1).
The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	 The mineralised lodes extend 1,100 m along strike towards 045°, dip steeply to the southeast at 70° to 80° and extend up to 420 m below surface (to the 0 mRL). The lodes range from 2 m to 10 m thick (averaging ~3 to 5 m), with the bonanza grade quartz veins 2 to 3 m thick.
 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the appropriate of model data to drill halp data and use of 	 Estimation of the Mineral Resource was by Ordinary Kriging (OK) using Datamine software, with the bonanza grade core domain of the lodes defined by Categorical Indicator Kriging (CIK). The estimation process was as follows: Drill hole database and mineralisation/weathering solids and surfaces imported into Datamine. Wireframe solids and surfaces used to select and code drill hole data. Drill hole data composited to 1 m downhole intervals within the mineralised lodes, with a minimum allowable composite of 0.5 m at the lode base. For CIK, grade thresholds were selected from pronounced breaks or inflections in the grade distribution within the overall mineralised lode, and indicators (0,1) applied above and below the threshold. Estimation of these indicators (via OK) into a small resolution block model resulted in estimates of proportions above and below the threshold. A suitable proportion from this model was then selected to define sub-domains within the overall lode domain. For the main lode (Lode 1), a proportion threshold of 0.42 was
	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping.

of the bonanza grades. For the smaller Lodes, which have far

Criteria	JORC Code explanation	Commentary
Criteria	JORC Code explanation	fewer samples, 0.33 was selected for the high grade threshold. Lower grade ('internal waste') sub-domains were also defined by CIK. This resulted in three sub-domains within the overall mineralised lodes: low, medium and high grade. Composited drill hole data was then flagged and coded according to the CIK defined sub-domains. Composited data imported into Supervisor and Isatis software for statistical and geostatistical analysis. Variography for gold was performed on data transformed to normal scores, and the variogram model was back-transformed to original units. Variography was performed for data from the main lode (Lode 1) for the three sub-domains as only as there are relatively few composite samples in Lodes 2, 3 and 4. The variogram parameters from Lode 1 were used for the smaller lodes. The variogram models had moderate nugget effects (30 to 50% of total sill), with ranges of 120 to 80 m down plunge. The range across dip was very short, generally 2 to 3 m. To prevent the extreme grades in the high-grade sub-domain smearing across the entire sub-domain, high grade distance restrictions were applied. This technique uses the uncapped estimate within a certain distance of the extreme grades, but capped beyond this distance. For Lode 1, the cap used was 55 ppm Au, with distances of 2 mE, 20 mN and 20 mRL used for the uncapped estimate. These distances align with the known geometry and extent of the very high grade shoots. The caps were based on inflections and discontinuities in the histograms and log-probability plots, and their spatial locations. Caps used for the smaller lodes were: Lode 2 (35 ppm), Lode 3 (no cap), Lode 4 (10 ppm) with the same spatial restrictions as for Lode 1.
		variogram range, with anisotropies retained. A minimum of 8 and maximum of 20 (1m composite) samples per block were used for the low and medium sub-domains, with a maximum of 16 samples

Criteria	JORC Code explanation	Commentary
		for the high grade sub-domain. Estimates were into parent blocks, not sub-blocks, with the low, medium and high grade sub-domains treated as hard boundaries. If a block was not estimated with these search parameters, then the ellipse was expanded by a factor of two, using the same sample numbers. If a block was not estimated on the second pass, then a third pass was used – this was an expanded search of a factor of 4 compared to the first pass, with a minimum of two and maximum of 18 samples. For the high grade sub-domain in Lode 1, 60% of blocks were estimated on the first pass and 35% on the second. No blocks in the low and medium sub-domains in all the mineralised lodes were left unestimated. The overall dip and dip direction of the mineralised lodes are relatively consistent, but there are enough changes in geometry where locally varying search ellipse and variogram directions would be advantageous. The dynamic anisotropy (DA) search feature in Datamine allows the search neighbourhood ellipse dip and dip direction to be defined separately for each block. The local dips and dip directions were calculated from the orientation of the specially constructed 'trend surfaces'. The block model itself was a rotated model in MGA94 grid, with a parent block size of 5 mE x 10 mN x 5 mRL, which is about half of the average drill spacing in the well-mineralised areas. The model was rotated 45° from north so that the 10 mN blocks were subparallel to the strike of the lodes. Sub-blocking was to a minimum of 0.25 mE x 1 mN x 1 mRL for accurate volume representation, and the blocks and sub-blocks were coded by mineralised lode, weathering and topography. Estimates of Au grades were validated against the composited drill hole data by extensive visual checking in cross-section, plan and on screen in 3D, by global (per lode) comparisons of input data and model, and by semi-local statistical methods (swath plots). All methods showed satisfactory results.

Criteria	JORC Code explanation	Commentary
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content. 	 Bulk density determinations (see below) were made on dry core. Tonnages are therefore estimated on a dry basis.
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	 An open pit mining cut-off grade of 0.8 ppm Au and an underground mining cut-off grade of 1.5 ppm Au were established via an economic model that was used for a Scoping Study undertaken by Cube Consulting in March 2024. The gold price used was AUD\$3,000 per ounce. Mining cost inputs have been based on comparable operations within the region. A processing cost of \$35 per tonne treated, and a surface road haulage cost of \$15 per ore tonne have been accounted for to reflect the proposed off-site processing strategy in the Scoping Study. The gold price has increased considerably since March 2024 but so have indicative toll treatment and road haulage charges. Assuming an AUD\$5,500 per ounce gold price, processing costs of \$65/tonne and road haulage of \$15/tonne, then the cut-off grades as used in March 2024 are still applicable for July 2025. As the recently discovered lodes (Lodes 3 and 4) were not known about for the March 2024 Scoping Study, then the pit optimisations did not include this part of the resource. The optimised pit from March 2024 reached to 300 mRL (120 m below surface), so the 320 mRL was chosen as a reasonable divide between open cut and underground resources for the July 2025 MRE update.
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made. 	 The Swiftsure deposit would initially be mined utilizing open pit mining methods, before transitioning to underground extraction utilizing conventional underground methods (decline access with long hole stoping) to access the orebody at depth. Open pit optimisations were carried out using Whittle optimisation software for the Sept 2025 Scoping Study. The block model was re-blocked to a Standard Mining Unit (SMU) size of 2.5(x) x 5(y) x 5m(z) to reflect open pit mining extraction

Criteria	JORC Code explanation	Commentary
		 resolution. This re-blocking produced a grade dilution of 27% and a tonnage dilution of 25%, which is considered appropriate for the mineralisation geometry. No additional dilution has been applied post-optimisation. 100% mining recovery was applied for open pit mining. Underground mineable stope shapes were created using Deswik.SO software. Stope shapes were generated with Au grade as the optimisation field and the stoping cut-off grade applied (1.5 g/t Au). A vertical level spacing of 22.5 m has been used, with a minimum mining width of 1.0 m. Additional stope dilution of 0.5 m on the footwall and 0.5 m on the hanging wall was applied in the stope design process to account for unplanned dilution. Dilution was applied at zero grade. Mining recoveries were set at 100% for development activities and 85% for open stoping to account for stope pillars and also mining loss during bogging operations.
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	 The initial metallurgical test work on oxide and fresh rock samples undertaken by the Company showed recoveries ranging between 97% and 99%. The recoveries assumed for the updated Scoping Study was 97%. Further, more detailed metallurgical test work has been commissioned to evaluate the gold recoveries and reagent consumption from the mineralisation.
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	There are no known environmental issues, with a number of historical and operational gold mines within 50 km of Swiftsure, in similar physical geographical settings.

Criteria	JORC Code explanation	Commentary
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 Bulk density test work was on solid diamond core samples from the fresh rock, with the water immersion technique used for these determinations. An average density of 2.7 t/m³ was used for the fresh rock portion of the mineralised lodes and 2.84 t/m³ was used for fresh country rock. For the oxide/transition zone, a bulk density of 2.5 t/m³ was assumed, and for the transported 2.0 t/m³.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 The mineralised lodes are classified as Indicated where the drilling pattern is 20 m along strike and 20 m down dip, which is all above the 100 mRL. Inferred is material within the mineralised lodes but outside the Indicated, where the drill spacing is about 40 m x 40 m, with a maximum of 50 m beyond the lower-most/edge drill hole. Blocks beyond this distance, even in the mineralised lodes are not part of the classified resource. This classification considers the confidence of the geological interpretation and estimation, and the quality of the data and reflects the view of the Competent Person.
Audits or reviews	 The results of any audits or reviews of Mineral Resource estimates. 	 No external audits of the mineral resource have occurred, although the independent consultants used for the resource estimate (Cube Consultants) conduct internal peer review
Discussion of relative accuracy/confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 This is addressed in the relevant paragraph on Classification above. The Mineral Resource relates to global tonnage and grade estimates. There has been no mining at Swiftsure or Tiptoe, and therefore no reconciliation data is available.