

# ASX ANNOUNCEMENT

13<sup>th</sup> Dec 2021

# High-grade gold along 15km of the Carnage shear at Ora Banda

- High-grade assay results in aircore have been received for CAV's maiden 168 hole 10,869m geochemical aircore drilling program targeting structurally controlled gold mineralisation under cover.
- The wide spaced drill program confirmed a 15km anomalous gold and arsenic envelope along the Carnage Shear Zone.
- Reconnaissance drilling was completed on 80m centres with lines spaced from 250m up to 1,000m apart in the initial program.
- This new phase of drilling has generated three broad gold anomalies Carnage, Highlander and Ghan Dam, which are all open along strike and at depth.
- \* Six aircore holes ended in anomalous gold mineralisation near, or at the top of fresh rock.
- Significant results include:
  - 4m @ 8.82g/t from 40m in hole OBAC022
  - 8m @ 2.74g/t from 48m in hole OBAC089 (*inc.4m* @ 5.1g/t from 52m)
  - 12m @ 0.44g/t from surface in hole OBAC038 and
  - 4m @ 1.40g/t from 24m in hole OBAC038
  - 4m @ 0.76g/t from 56m in hole OBAC023
  - 4m @ 0.72g/t from 16m in hole OBAC108
  - 9m @ 0.31g/t from 56m in hole OBAC087 (ended in mineralization)
- Multi element geochemistry from the recent assays has helped to understand the geology and distribution of the anomalous gold mineralisation along the Carnage shear.
- Analogous geological setting target to the +2.5Moz @ +4g/t Invincible Gold Mine<sup>1</sup>, discovered by Gold Fields Limited near Kambalda in 2012.

#### **CEO Humphrey Hale commented:**

"We are delighted with the results of our first aircore drilling at Ora Banda. Our initial wide spaced reconnaissance drilling has confirmed a very large, 15km corridor of gold anomalism along the Carnage shear with multiple high-grade gold zones in the regolith profile. These new prospects will be followed up with more detailed drilling very soon. We have a drill rig booked to return to Ora Banda in early 2022 to expand and develop these exciting new gold zones."

<sup>1</sup> <u>https://www.goldfields.com/pdf/investors/integrated-annual-reports/2020/mmr-2020.pdf</u>

Carnavale Resources Limited (ASX: CAV) is pleased to provide an update on the progress of exploration at the Ora Banda South Gold Project, 90km north of Kalgoorlie in the West Australian Goldfields.

The 2021 phase one aircore drilling program, comprising 168 holes for 10,869m, was designed to test the bedrock gold potential along the Carnage Shear, identified from aeromagnetics. This initial wide spaced, aircore drilling program tested targets identified by CAV's previous soil sampling program, previous aircore gold anomalies and structural targets under alluvial cover. The aircore program confirms the prospective Carnage Shear occurs along the 15km long tenement package and shows anomalous gold, arsenic, bismuth and lead with three new gold prospects identified that contain high grade gold intercepts – Carnage, Highlander and Ghan Dam (Figure 1).

Information regarding the drill hole targeting, and the soil sampling programs can be found in our ASX release "Initial Aircore drilling commenced at the Ora Banda South Gold Project - 2 September 2021" and. drilling targeting significant shallow bedrock gold results from limited aircore and RAB drilling completed by previous explorers see ASX release "Carnavale Bolsters Gold Portfolio with New Acquisition Ora Banda South - 5 October 2020".

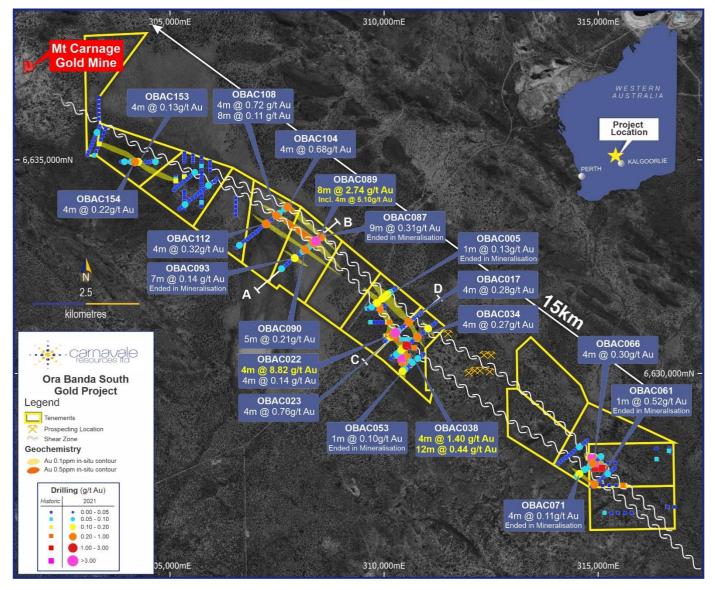
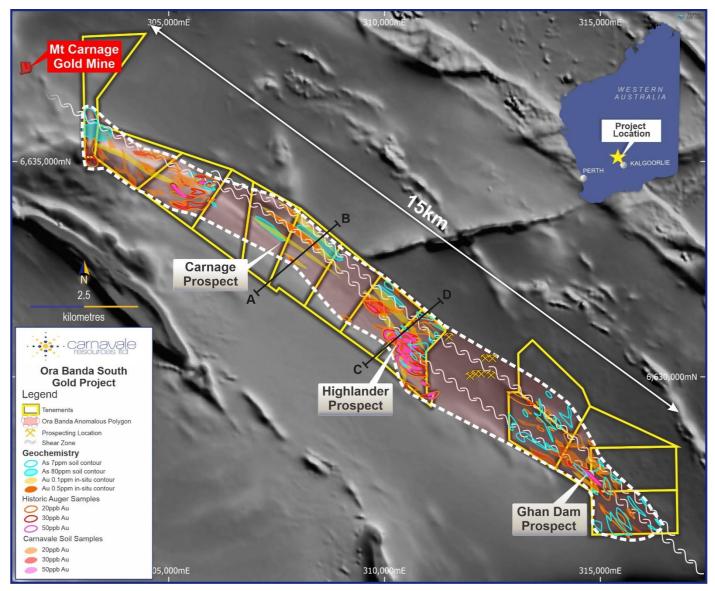
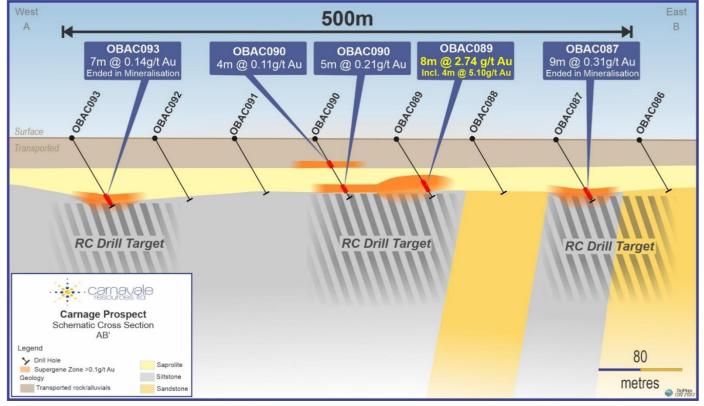



Figure 1: CAV aircore drilling with significant intercepts

The previous gold and arsenic in soil as well as the downhole gold and arsenic data from the recent aircore drilling has been contoured and defines the targeted Carnage Shear (Figure 2). This data supports the interpretation of a semi-continuous envelope of coincident multi-element anomalism that extends from the Mount Carnage Gold mine in the northwest along the Carnage Shear for the 15 km length of the tenement package. This represents a large prospective target corridor to explore, with high-grade gold already intercepted at the Carnage Prospect and the Highlander Prospect (Figure 2). Central to CAV's tenement holding is an area owned by a prospector that has worked the surface and developed shafts in the search for gold, these workings are shown in figure 1 and 2.

There is a strong correlation between moderate arsenic results and bedrock gold enrichment. In addition, the highest values of arsenic are located at the interpreted northwest southeast structures, which are also elevated in bismuth and lead.





Figure 2: Soil sampling geochemistry with drilling geochemistry indicates a 15km mineralised trend

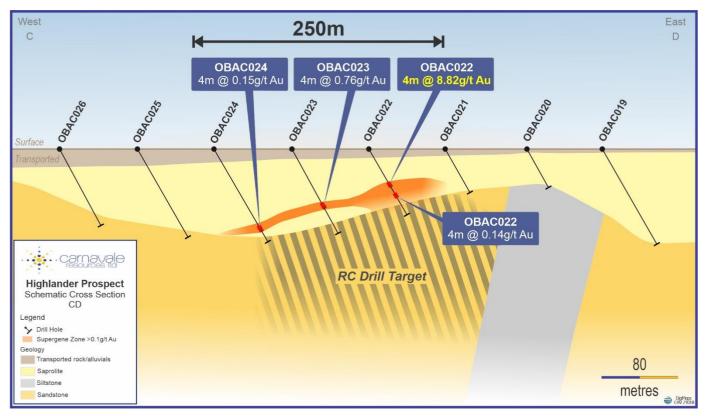
The object of this initial aircore program was to test for the geochemical gold signature in the regolith that would lead to structurally hosted gold mineralisation under cover that could be similar to the Invincible discovery at St lves.

It was anticipated that indications of mineralisation would be present as a geochemical signature in gold, arsenic and other elements in the regolith profile that would provide a vector to higher grade gold mineralisation. CAV is very pleased with the broad geochemical envelope that has been defined by this drilling, including the high-grade gold intercepts.

In addition to outlining significant gold anomalism in the regolith, CAV has gained an improved understanding of the geology and structure, the depth of transported material as well as the depth of weathering within the regolith profile across the tenement package. CAV is looking forward to returning to Ora Banda to extend and expand these new gold Prospects.

## **Carnage Prospect**




# Figure 4: Cross section through the Carnage Prospect with 500m wide anomalous zone and highgrade gold in regolith

The geology of the Carnage prospect is dominated by a sequence of sedimentary rocks crosscut by the Carnage Shear. The area is overlain with a layer of transported material that is up to 40m in places. The transported cover has prevented any surface sampling such as soils or auger sampling from being effective at detecting concealed gold anomalism. CAV reviewed the structural information from the aero magnetics and extrapolated the gold in soil anomalism which suggested a that there could be a concealed gold target beneath the transported cover. CAV drilled two lines of broad spaced aircore over Carnage Prospect area to test for new mineralisation.

The Carnage Prospect has a gold anomaly that is 500m wide (figure 4) and 2.5km long that is open to the northeast and southwest (Figure 1). Significant intercepts at the Carnage Prospect include:

- 8m @ 2.74g/t in hole OBAC089 from 48m inc. 4m @ 5.1g/t from 52m
- 9m @ 0.31g/t in hole OBAC087 from 56m ended in mineralisation
- 4m @ 0.72g/t in hole OBAC108 from 16m
- 5m @ 0.21g/t in hole OBAC090 from 60m
- 7m @ 0.14g/t in hole OBAC093 from 64m ended in mineralisation

# **Highlander Prospect**



## Figure 5: Cross section through the Highlander Prospect with 250m wide anomalous zone and highgrade gold in regolith

The geology of the Highlander Prospect is similar to the Carnage Prospect with sediments intersected by the Carnage shear and other associated fault structures. The depth of transported cover is not as extensive as at the Carnage Prospect 3km to the northwest. The Highlander Prospect has a blanket of anomalous gold and arsenic in the soil geochemistry that was the target for the broad spaced aircore drilling. High-grade gold mineralisation was intersected in hole OBAC022 with an associated supergene gold anomaly that extends over 250m in width and has a strike length of 2.5 km. Significant intercepts include:

- 4m @ 8.82g/t from 40m and 4m @ 0.14g/t from 56m in hole OBAC022
- 12m @ 0.44g/t from surface in hole OBAC038 inc. 4m @ 0.85g/t from 8m
- 4m @ 1.40g/t from 24m in hole OBAC038
- 4m @ 0.76g/t from 56m in hole OBAC023
- 1m @ 0.13g/t from106m in hole OBAC005 ended in mineralisation
- 1m @ 0.10g/t from 59m in Hole OBAC053 ended in mineralisation

## **Ghan Dam Prospect**

The Ghan Dam Prospect is located in the southern most tenements of the Ora Banda South Gold Project. The geology is dominated by similar sediments to the Highlander Prospect with the addition of intrusive porphyry dykes.

The Ghan Dam Prospect has coincident gold and Arsenic soil anomalies with some historic drilling that outlines gold anomalism associated with the Carnage Shear and associated fault structures. CAV followed up this anomalism with a program of broad spaced aircore. The earlier drilling and soil anomalies were confirmed by the recent drilling with intercepts that included:

- 4m @ 0.30g/t from 120m in hole OBAC066
- 1m @ 0.52g/t from 64m in hole OBAC061 ended in mineralisation
- 4m @ 0.11g/t from 84m in hole OBAC071 ended in mineralisation

Significant shallow bedrock gold results from limited aircore and RAB drilling completed by previous explorers have been contoured and make up the geochemical image in figure 2. Significant results include:

- 14m @ 0.79g/t in <u>historic</u> hole OBAC033 from 73m and 2m @ 1.56g/t from 90m ended in mineralisation
- 5m @ 2.29g/t in hole KWAC055 from 116m ended in mineralisation
- 8m @ 2.58g/t in hole OBRC096 from 32m and 4m @ 0.72g/t from 60m

For information regarding aircore and RAB drilling completed by previous explorers see ASX release "Carnavale Bolsters Gold Portfolio with New Acquisition Ora Banda South - 5 October 2020".

## Next steps

CAV is in the process of planning more detailed, follow up aircore drilling to extend and expand the exciting new anomalies at the Carnage, Highlander and Ghan Dam Prospects, with an aircore rig booked for February 2022.

As part of a systematic exploration approach and, subject to the results of this additional aircore drilling, CAV intends to drill test the deeper extensions of the regolith anomalies with RC drilling.

#### This release is approved by the Board of Carnavale Resources Limited.

#### For further information contact:

| Ron Gajewski | Humphrey Hale      |
|--------------|--------------------|
| Chairman     | CEO                |
|              | P: +61 8 9380 9098 |

#### **Competent Persons Statement**

The information that relates to Exploration Results for the projects discussed in this announcement represents a fair and accurate representation of the available data and studies; and is based on, and fairly represents information and supporting documentation reviewed by Mr. Humphrey Hale, a Competent Person who is a Member of The Australian Institute of Geoscientists. Mr. Hale is the Chief Executive Officer of Carnavale Resources Limited and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resource and Ore Reserves". Mr. Hale consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

#### **Forward Looking Statements**

Statements regarding Carnavale's plans with respect to the mineral properties, resource reviews, programs, economic studies and future development are forward-looking statements. There can be no assurance that Carnavale's plans for development of its mineral properties will proceed any time in the future. There can also be no assurance that Carnavale will be able to confirm the presence of additional mineral resources/reserves, that any mineralisation will prove to be economic or that a mine will successfully be developed on any of Carnavale's mineral properties.

#### Information relating to Previous Disclosure

Previously reported material Information relating to the Ora Banda Gold Project includes:

#### Exploration

Carnavale Bolsters Gold Portfolio with New Acquisition Ora Banda South 5 October 2020 CAV expands gold in soil anomalies at Ora Banda South Project 29 July 2021 Initial Aircore drilling commenced at the Ora Banda South Gold Project 2 September 2021 Initial Aircore drilling completed at the Ora Banda South Gold Project 29th September 2021

# Appendix 1

# Significant intercepts

| HoleID  | Depth From | Intercept                | g/m   | Including:                       |
|---------|------------|--------------------------|-------|----------------------------------|
| OBAC022 | 40         | <b>4.0m @ 8.82g/t</b> Au | 35.28 |                                  |
| OBAC089 | 48         | <b>8.0m @ 2.74g/t</b> Au | 21.9  | inc. <b>4m @ 5.1g/t</b> from 52m |
| OBAC038 | 24         | <b>4.0m @ 1.40g/t</b> Au | 5.6   |                                  |
| OBAC038 | 0          | 12.0m @ 0.44g/t Au       | 5.24  | inc. <b>4m @ 0.85g/t</b> from 8m |
| OBAC023 | 56         | 4.0m @ 0.76g/t Au        | 3.02  |                                  |
| OBAC108 | 16         | 4.0m @ 0.72g/t Au        | 2.89  |                                  |
| OBAC087 | 56         | 9.0m @ 0.31g/t Au        | 2.79  | ended in mineralisation          |
| OBAC104 | 28         | 4.0m @ 0.68g/t Au        | 2.7   |                                  |
| OBAC038 | 36         | 4.0m @ 0.44g/t Au        | 1.76  |                                  |
| OBAC112 | 60         | 4.0m @ 0.32g/t Au        | 1.3   |                                  |
| OBAC066 | 120        | 4.0m @ 0.30g/t Au        | 1.22  |                                  |
| OBAC040 | 0          | 8.0m @ 0.14g/t Au        | 1.14  |                                  |
| OBAC017 | 68         | 4.0m @ 0.28g/t Au        | 1.12  |                                  |
| OBAC034 | 28         | 4.0m @ 0.27g/t Au        | 1.08  |                                  |
| OBAC090 | 60         | 5.0m @ 0.21g/t Au        | 1.08  |                                  |
| OBAC093 | 64         | 7.0m @ 0.14g/t Au        | 0.98  | ended in mineralisation          |
| OBAC108 | 44         | 8.0m @ 0.11g/t Au        | 0.89  |                                  |
| OBAC154 | 68         | 4.0m @ 0.22g/t Au        | 0.87  |                                  |
| OBAC097 | 40         | 4.0m @ 0.19g/t Au        | 0.75  |                                  |
| OBAC024 | 104        | 4.0m @ 0.15g/t Au        | 0.61  |                                  |
| OBAC039 | 0          | 4.0m @ 0.15g/t Au        | 0.61  |                                  |
| OBAC008 | 40         | 4.0m @ 0.15g/t Au        | 0.6   |                                  |
| OBAC022 | 56         | 4.0m @ 0.14g/t Au        | 0.57  |                                  |
| OBAC061 | 64         | 1.0m @ 0.52g/t Au        | 0.52  | ended in mineralisation          |
| OBAC004 | 76         | 4.0m @ 0.13g/t Au        | 0.52  |                                  |
| OBAC153 | 48         | 4.0m @ 0.13g/t Au        | 0.51  |                                  |
| OBAC108 | 28         | 4.0m @ 0.12g/t Au        | 0.49  |                                  |
| OBAC071 | 84         | 4.0m @ 0.11g/t Au        | 0.43  | ended in mineralisation          |
| OBAC090 | 28         | 4.0m @ 0.11g/t Au        | 0.43  |                                  |
| OBAC006 | 96         | 4.0m @ 0.10g/t Au        | 0.42  |                                  |
| OBAC122 | 56         | 2.0m @ 0.10g/t Au        | 0.2   |                                  |
| OBAC005 | 106        | 1.0m @ 0.13g/t Au        | 0.13  | ended in mineralisation          |
| OBAC030 | 40         | 1.0m @ 0.10g/t Au        | 0.11  |                                  |
| OBAC053 | 59         | 1.0m @ 0.10g/t Au        | 0.1   | ended in mineralisation          |

(Greater than 0.1g/t with no waste with no included waste - inclusions greater than 0.5g/t with no included waste)

# Appendix 2

Collar table

| Hole ID | Туре | End Depth | Grid          | Easting  | Northing | RL  | Dip | Azimuth |
|---------|------|-----------|---------------|----------|----------|-----|-----|---------|
| OBAC001 | AC   | 101       | MGA94_Z51     | 310265.1 | 6632000  | 400 | -60 | 52      |
| OBAC002 | AC   | 95        | MGA94_Z51     | 310203.2 | 6631949  | 400 | -60 | 48      |
| OBAC003 | AC   | 123       | MGA94_Z51     | 310144.2 | 6631898  | 400 | -60 | 43      |
| OBAC004 | AC   | 84        | MGA94_Z51     | 310077.8 | 6631851  | 400 | -60 | 53      |
| OBAC005 | AC   | 107       | MGA94_Z51     | 310021.1 | 6631795  | 400 | -60 | 54      |
| OBAC006 | AC   | 106       | MGA94_Z51     | 309951.7 | 6631749  | 400 | -60 | 62      |
| OBAC007 | AC   | 85        | MGA94_Z51     | 309890.6 | 6631702  | 400 | -60 | 40      |
| OBAC008 | AC   | 62        | MGA94_Z51     | 309832.3 | 6631649  | 400 | -60 | 46      |
| OBAC009 | AC   | 56        | MGA94_Z51     | 309774.4 | 6631606  | 400 | -60 | 45      |
| OBAC010 | AC   | 62        | MGA94_Z51     | 309709.2 | 6631555  | 400 | -60 | 64      |
| OBAC011 | AC   | 83        | MGA94_Z51     | 309645.6 | 6631503  | 400 | -60 | 33      |
| OBAC012 | AC   | 65        | MGA94_Z51     | 310867.8 | 6631435  | 400 | -60 | 50      |
| OBAC013 | AC   | 89        | MGA94_Z51     | 310822.7 | 6631400  | 400 | -60 | 54      |
| OBAC014 | AC   | 66        | MGA94_Z51     | 310766.1 | 6631350  | 400 | -60 | 49      |
| OBAC015 | AC   | 67        | MGA94_Z51     | 310698.3 | 6631300  | 400 | -60 | 48      |
| OBAC016 | AC   | 71        | MGA94_Z51     | 310638.1 | 6631252  | 400 | -60 | 48      |
| OBAC017 | AC   | 87        | MGA94_Z51     | 310576.3 | 6631202  | 400 | -60 | 49      |
| OBAC018 | AC   | 135       | MGA94_Z51     | 310512   | 6631155  | 400 | -60 | 49      |
| OBAC019 | AC   | 112       | MGA94_Z51     | 310451.2 | 6631099  | 400 | -60 | 47.5    |
| OBAC020 | AC   | 46        | MGA94_Z51     | 310388.2 | 6631054  | 400 | -60 | 44      |
| OBAC021 | AC   | 52        | MGA94_Z51     | 310329.5 | 6630994  | 400 | -60 | 58      |
| OBAC022 | AC   | 78        | MGA94_Z51     | 310263.1 | 6630951  | 400 | -60 | 55      |
| OBAC023 | AC   | 113       | MGA94_Z51     | 310202   | 6630901  | 400 | -60 | 37      |
| OBAC024 | AC   | 111       | MGA94_Z51     | 310141   | 6630851  | 400 | -60 | 50      |
| OBAC025 | AC   | 104       | MGA94_Z51     | 310080.3 | 6630801  | 400 | -60 | 51      |
| OBAC026 | AC   | 69        | MGA94_Z51     | 310017.3 | 6630752  | 400 | -60 | 48.5    |
| OBAC027 | AC   | 64        | MGA94_Z51     | 311210.3 | 6631202  | 400 | -60 | 35      |
| OBAC028 | AC   | 43        | MGA94_Z51     | 311157.8 | 6631152  | 400 | -60 | 42      |
| OBAC029 | AC   | 44        | MGA94_Z51     | 311090.2 | 6631101  | 400 | -60 | 61      |
| OBAC030 | AC   | 42        | MGA94_Z51     | 311027.1 | 6631051  | 400 | -60 | 49      |
| OBAC031 | AC   | 51        | MGA94_Z51     | 310962.3 | 6631002  | 400 | -60 | 37      |
| OBAC032 | AC   | 35        | MGA94_Z51     | 310909.5 | 6630951  | 400 | -60 | 58.5    |
| OBAC033 | AC   | 29        | MGA94_Z51     | 310839.2 | 6630901  | 400 | -60 | 36      |
| OBAC034 | AC   | 49        | MGA94_Z51     | 310778.2 | 6630852  | 400 | -60 | 50      |
| OBAC035 | AC   | 23        | MGA94_Z51     | 310713.1 | 6630802  | 400 | -60 | 57      |
| OBAC036 | AC   | 38        |               | 310651.2 | 6630753  | 400 | -60 | 46      |
| OBAC037 | AC   | 66        |               | 310593.6 | 6630699  | 400 | -60 | 39      |
| OBAC038 | AC   | 83        | <br>MGA94_Z51 | 310525.9 | 6630651  | 400 | -60 | 61      |
| OBAC039 | AC   | 76        | <br>MGA94_Z51 | 310458.3 | 6630602  | 400 | -60 | 55      |
| OBAC040 | AC   | 72        | <br>MGA94_Z51 | 310402.6 | 6630548  | 400 | -60 | 14      |
| OBAC041 | AC   | 73        | MGA94_Z51     | 310344.8 | 6630497  | 400 | -60 | 64      |
| OBAC042 | AC   | 85        | MGA94_Z51     | 310283.9 |          | 400 | -60 | 33      |

|         |    | •   |           |          |         | -   |     | -    |
|---------|----|-----|-----------|----------|---------|-----|-----|------|
| OBAC043 | AC | 80  | MGA94_Z51 | 310220.3 | 6630405 | 400 | -60 | 25   |
| OBAC044 | AC | 70  | MGA94_Z51 | 310160.9 | 6630349 | 400 | -60 | 44   |
| OBAC045 | AC | 39  | MGA94_Z51 | 310918.4 | 6630453 | 400 | -60 | 53   |
| OBAC046 | AC | 47  | MGA94_Z51 | 310848.4 | 6630403 | 400 | -60 | 51   |
| OBAC047 | AC | 62  | MGA94_Z51 | 310788.3 | 6630351 | 400 | -60 | 57   |
| OBAC048 | AC | 85  | MGA94_Z51 | 310729.7 | 6630300 | 400 | -60 | 51   |
| OBAC049 | AC | 99  | MGA94_Z51 | 310664.3 | 6630254 | 400 | -60 | 49   |
| OBAC050 | AC | 83  | MGA94_Z51 | 310605.6 | 6630198 | 400 | -60 | 45   |
| OBAC051 | AC | 76  | MGA94_Z51 | 310545.1 | 6630144 | 400 | -60 | 54   |
| OBAC052 | AC | 60  | MGA94_Z51 | 310485.4 | 6630094 | 400 | -60 | 48   |
| OBAC053 | AC | 60  | MGA94_Z51 | 310428.5 | 6630051 | 400 | -60 | 62   |
| OBAC054 | AC | 76  | MGA94_Z51 | 315335   | 6627751 | 400 | -60 | 49   |
| OBAC055 | AC | 57  | MGA94_Z51 | 315276.9 | 6627698 | 400 | -60 | 52   |
| OBAC056 | AC | 82  | MGA94_Z51 | 315220.5 | 6627653 | 400 | -60 | 47   |
| OBAC057 | AC | 75  | MGA94_Z51 | 315153.5 | 6627600 | 400 | -60 | 48   |
| OBAC058 | AC | 48  | MGA94_Z51 | 315089.2 | 6627551 | 400 | -60 | 45   |
| OBAC059 | AC | 66  | MGA94_Z51 | 315027.5 | 6627500 | 400 | -60 | 50   |
| OBAC060 | AC | 76  | MGA94_Z51 | 314967.6 | 6627451 | 400 | -60 | 56   |
| OBAC061 | AC | 65  | MGA94_Z51 | 314909.5 | 6627405 | 400 | -60 | 50   |
| OBAC062 | AC | 57  | MGA94_Z51 | 314839.1 | 6627352 | 400 | -60 | 49   |
| OBAC063 | AC | 70  | MGA94_Z51 | 315062.3 | 6628060 | 400 | -60 | 40   |
| OBAC064 | AC | 86  | MGA94_Z51 | 315003.8 | 6628000 | 400 | -60 | 48   |
| OBAC065 | AC | 87  | MGA94_Z51 | 314940.4 | 6627955 | 400 | -60 | 55   |
| OBAC066 | AC | 126 | MGA94_Z51 | 314871.5 | 6627902 | 400 | -60 | 50   |
| OBAC067 | AC | 118 | MGA94_Z51 | 314809.3 | 6627850 | 400 | -60 | 59   |
| OBAC068 | AC | 105 | MGA94_Z51 | 314743.1 | 6627804 | 400 | -60 | 52   |
| OBAC069 | AC | 98  | MGA94_Z51 | 314685.2 | 6627752 | 400 | -60 | 43   |
| OBAC070 | AC | 72  | MGA94_Z51 | 314629.5 | 6627705 | 400 | -60 | 53   |
| OBAC071 | AC | 88  | MGA94_Z51 | 314559.1 | 6627651 | 400 | -60 | 60   |
| OBAC072 | AC | 67  | MGA94_Z51 | 314506.9 | 6627602 | 400 | -60 | 41   |
| OBAC073 | AC | 77  | MGA94_Z51 | 314743   | 6628431 | 400 | -60 | 48.5 |
| OBAC074 | AC | 81  | MGA94_Z51 | 314680.6 | 6628377 | 400 | -60 | 59   |
| OBAC075 | AC | 71  | MGA94_Z51 | 314615.7 | 6628329 | 400 | -60 | 45   |
| OBAC076 | AC | 65  | MGA94_Z51 | 314561.4 | 6628280 | 400 | -60 | 55   |
| OBAC077 | AC | 66  | MGA94_Z51 | 314492.6 | 6628238 | 400 | -60 | 49   |
| OBAC078 | AC | 74  | MGA94_Z51 | 314428.1 | 6628179 | 400 | -60 | 55   |
| OBAC079 | AC | 68  | MGA94_Z51 | 314369.4 | 6628131 | 400 | -60 | 48   |
| OBAC080 | AC | 72  | MGA94_Z51 | 314308.4 | 6628080 | 400 | -60 | 54   |
| OBAC081 | AC | 79  | MGA94_Z51 | 314251.2 | 6628038 | 400 | -60 | 52   |
| OBAC082 | AC | 73  | MGA94_Z51 | 314180.6 | 6627988 | 400 | -60 | 61   |
| OBAC083 | AC | 68  | MGA94_Z51 | 314114.9 | 6627933 | 400 | -60 | 48   |
| OBAC084 | AC | 70  | MGA94_Z51 | 314060.2 | 6627884 | 400 | -60 | 43   |
| OBAC085 | AC | 85  | MGA94_Z51 | 315377.8 | 6627778 | 400 | -60 | 51   |
| OBAC086 | AC | 54  | MGA94_Z51 | 308593.1 | 6633247 | 400 | -60 | 50.5 |
| OBAC087 | AC | 65  | MGA94_Z51 | 308527.8 | 6633198 | 400 | -60 | 52.5 |
| OBAC088 | AC | 60  | MGA94_Z51 | 308463   | 6633148 | 400 | -60 | 51   |
|         |    |     |           | -        |         |     |     |      |

|         |    | l   | 1         |          |         |     |     |      |
|---------|----|-----|-----------|----------|---------|-----|-----|------|
| OBAC089 | AC | 68  | MGA94_Z51 | 308407.3 | 6633100 | 400 | -60 | 50.5 |
| OBAC090 | AC | 66  | MGA94_Z51 | 308342.7 | 6633052 | 400 | -60 | 50   |
| OBAC091 | AC | 60  | MGA94_Z51 | 308284.1 | 6632999 | 400 | -60 | 52   |
| OBAC092 | AC | 67  | MGA94_Z51 | 308222.9 | 6632950 | 400 | -60 | 52.5 |
| OBAC093 | AC | 71  | MGA94_Z51 | 308158.8 | 6632900 | 400 | -60 | 51   |
| OBAC094 | AC | 52  | MGA94_Z51 | 308098.6 | 6632855 | 400 | -60 | 50   |
| OBAC095 | AC | 89  | MGA94_Z51 | 308031.8 | 6632799 | 400 | -60 | 51   |
| OBAC096 | AC | 66  | MGA94_Z51 | 307977.4 | 6632753 | 400 | -60 | 54.5 |
| OBAC097 | AC | 65  | MGA94_Z51 | 307911.4 | 6632701 | 400 | -60 | 50   |
| OBAC098 | AC | 72  | MGA94_Z51 | 307849.6 | 6632657 | 400 | -60 | 50   |
| OBAC099 | AC | 57  | MGA94_Z51 | 307784.2 | 6632604 | 400 | -60 | 52   |
| OBAC100 | AC | 52  | MGA94_Z51 | 307723.6 | 6632549 | 400 | -60 | 48.5 |
| OBAC101 | AC | 60  | MGA94_Z51 | 307664.3 | 6632501 | 400 | -60 | 51.5 |
| OBAC102 | AC | 48  | MGA94_Z51 | 307604.9 | 6632454 | 400 | -60 | 51.5 |
| OBAC103 | AC | 66  | MGA94_Z51 | 307801.4 | 6633951 | 400 | -60 | 51   |
| OBAC104 | AC | 51  | MGA94_Z51 | 307739.5 | 6633897 | 400 | -60 | 51.5 |
| OBAC105 | AC | 56  | MGA94_Z51 | 307676.3 | 6633851 | 400 | -60 | 51   |
| OBAC106 | AC | 73  | MGA94_Z51 | 307608.8 | 6633793 | 400 | -60 | 53   |
| OBAC107 | AC | 57  | MGA94_Z51 | 307551.3 | 6633750 | 400 | -60 | 52   |
| OBAC108 | AC | 73  | MGA94_Z51 | 307488.8 | 6633695 | 400 | -60 | 52.5 |
| OBAC109 | AC | 84  | MGA94_Z51 | 307428.7 | 6633652 | 400 | -60 | 54   |
| OBAC110 | AC | 73  | MGA94_Z51 | 307370.1 | 6633600 | 400 | -60 | 50.5 |
| OBAC111 | AC | 56  | MGA94_Z51 | 307307.1 | 6633555 | 400 | -60 | 54   |
| OBAC112 | AC | 85  | MGA94_Z51 | 307245   | 6633500 | 400 | -60 | 61.5 |
| OBAC113 | AC | 63  | MGA94_Z51 | 307179.7 | 6633449 | 400 | -60 | 43.5 |
| OBAC114 | AC | 38  | MGA94_Z51 | 307098.5 | 6633393 | 400 | -60 | 48.5 |
| OBAC115 | AC | 59  | MGA94_Z51 | 307057.5 | 6633348 | 400 | -60 | 45   |
| OBAC116 | AC | 67  | MGA94_Z51 | 307007.7 | 6633306 | 400 | -60 | 48.5 |
| OBAC117 | AC | 31  | MGA94_Z51 | 306937   | 6633253 | 400 | -60 | 51.5 |
| OBAC118 | AC | 31  | MGA94_Z51 | 306869.5 | 6633197 | 400 | -60 | 50   |
| OBAC119 | AC | 22  | MGA94_Z51 | 306811.8 | 6633152 | 400 | -60 | 51.5 |
| OBAC120 | AC | 32  | MGA94_Z51 | 306746.2 | 6633104 | 400 | -60 | 50.5 |
| OBAC121 | AC | 50  | MGA94_Z51 | 306686.6 | 6633056 | 400 | -60 | 51.5 |
| OBAC122 | AC | 59  | MGA94_Z51 | 306620.9 | 6633000 | 400 | -60 | 50   |
| OBAC123 | AC | 56  | MGA94_Z51 | 306561.8 | 6632949 | 400 | -60 | 51   |
| OBAC124 | AC | 85  | MGA94_Z51 | 306093.7 | 6634555 | 400 | -60 | 49.5 |
| OBAC125 | AC | 100 | MGA94_Z51 | 306037.1 | 6634493 | 400 | -60 | 58.5 |
| OBAC126 | AC | 64  | MGA94_Z51 | 305957.3 | 6634443 | 400 | -60 | 52.5 |
| OBAC127 | AC | 41  | MGA94_Z51 | 305900.2 | 6634404 | 400 | -60 | 45   |
| OBAC128 | AC | 13  | MGA94_Z51 | 305842   | 6634346 | 400 | -60 | 50.5 |
| OBAC129 | AC | 10  | MGA94_Z51 | 305781.9 | 6634303 | 400 | -60 | 51.5 |
| OBAC130 | AC | 25  | MGA94_Z51 | 305713.6 | 6634251 | 400 | -60 | 54.5 |
| OBAC131 | AC | 29  | MGA94_Z51 | 305648   | 6634204 | 400 | -60 | 38.5 |
| OBAC132 | AC | 39  | MGA94_Z51 | 305597.5 | 6634146 | 400 | -60 | 52   |
| OBAC133 | AC | 52  | MGA94_Z51 | 305530.6 | 6634104 | 400 | -60 | 49   |
| OBAC134 | AC | 44  | MGA94_Z51 | 305457.7 | 6634051 | 400 | -60 | 47.5 |
|         |    |     |           | -        |         |     |     |      |

| OBAC136         AC         82         MGA94_Z51         305352.8         6633956         400         -60         55.5           OBAC137         AC         77         MGA94_Z51         30527.5         6633904         400         -60         45           OBAC138         AC         52         MGA94_Z51         305215.4         6633850         400         -60         51.5           OBAC139         AC         72         MGA94_Z51         30549.4         6634705         400         -60         51.5           OBAC140         AC         35         MGA94_Z51         305355         6634555         400         -60         45           OBAC142         AC         27         MGA94_Z51         305335         6634555         400         -60         45           OBAC143         AC         34         MGA94_Z51         305271         663451         400         -60         48           OBAC145         AC         31         MGA94_Z51         30507.5         6634254         400         -60         41.5           OBAC147         AC         31         MGA94_Z51         304056.6         663494         400         -60         91           OBAC148 <th>0046405</th> <th></th> <th>62</th> <th></th> <th>2054077</th> <th>6624004</th> <th>400</th> <th>60</th> <th>20.5</th>                | 0046405 |    | 62 |               | 2054077  | 6624004 | 400 | 60  | 20.5  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----|----|---------------|----------|---------|-----|-----|-------|
| OBAC137         AC         77         MGA94_Z51         305273.5         6633904         400         -60         45           OBAC138         AC         52         MGA94_Z51         305215.4         6633850         400         -60         41.5           OBAC139         AC         72         MGA94_Z51         305579.3         6634705         400         -60         45.5           OBAC141         AC         35         MGA94_Z51         305398.5         6634602         400         -60         47.5           OBAC142         AC         27         MGA94_Z51         305398.5         6634506         400         -60         45.5           OBAC143         AC         34         MGA94_Z51         30537.5         6634506         400         -60         48           OBAC144         AC         49         MGA94_Z51         30520.2         6634400         400         -60         41.5           OBAC145         AC         31         MGA94_Z51         30548.7         6634255         400         -60         41.5           OBAC146         AC         31         MGA94_Z51         30460.7         6634296         400         -60         91 <td< td=""><td>OBAC135</td><td>AC</td><td>63</td><td>MGA94_Z51</td><td>305407.7</td><td>6634001</td><td>400</td><td>-60</td><td>38.5</td></td<> | OBAC135 | AC | 63 | MGA94_Z51     | 305407.7 | 6634001 | 400 | -60 | 38.5  |
| OBAC138         AC         52         MGA94_Z51         305215.4         6633850         400         -60         41.5           OBAC139         AC         72         MGA94_Z51         305579.3         6634705         400         -60         37.5           OBAC140         AC         35         MGA94_Z51         30549.7         6634639         400         -60         47.5           OBAC141         AC         35         MGA94_Z51         305385.         6634506         400         -60         45           OBAC143         AC         34         MGA94_Z51         305398.5         6634506         400         -60         48           OBAC143         AC         49         MGA94_Z51         305209.2         6634400         400         -60         48           OBAC145         AC         31         MGA94_Z51         30507.5         6634256         400         -60         41.5           OBAC147         AC         31         MGA94_Z51         30460.7         6634957         400         -60         41.5           OBAC149         AC         57         MGA94_Z51         304496.6         6634944         400         -60         91           O                                                                                                                                       |         |    |    | _             |          |         |     |     |       |
| OBAC139         AC         72         MGA94_Z51         305579.3         6634705         400         -60         37.5           OBAC140         AC         58         MGA94_Z51         305498.7         6634639         400         -60         47.5           OBAC141         AC         35         MGA94_Z51         305385.         6634502         400         -60         45           OBAC142         AC         27         MGA94_Z51         305398.5         6634505         400         -60         45           OBAC143         AC         34         MGA94_Z51         305371.1         6634451         400         -60         48           OBAC144         AC         49         MGA94_Z51         305148.7         663455         400         -60         46           OBAC145         AC         31         MGA94_Z51         30507.5         663426         400         -60         41.5           OBAC147         AC         31         MGA94_Z51         30460.7         6634957         400         -60         100.5           OBAC149         AC         57         MGA94_Z51         30431.9         6634954         400         -60         98           OBAC                                                                                                                                       |         |    |    | _             |          |         |     |     |       |
| OBAC140         AC         S8         MGA94_Z51         305499.4         6634639         400         -60         51.5           OBAC141         AC         35         MGA94_Z51         305458.7         6634602         400         -60         47.5           OBAC142         AC         27         MGA94_Z51         305335         6634555         400         -60         45           OBAC143         AC         34         MGA94_Z51         305271.1         6634451         400         -60         48           OBAC145         AC         33         MGA94_Z51         30507.5         6634400         400         -60         46           OBAC146         AC         31         MGA94_Z51         30507.5         663495         400         -60         41.5           OBAC147         AC         31         MGA94_Z51         30460.7         6634957         400         -60         100.5           OBAC149         AC         57         MGA94_Z51         30457.1         6634954         400         -60         91           OBAC150         AC         49         MGA94_Z51         30431.5         6634956         400         -60         92           OBAC15                                                                                                                                       |         |    |    | _             |          |         |     |     |       |
| OBAC141         AC         35         MGA94_Z51         305458.7         6634602         400         -60         47.5           OBAC142         AC         27         MGA94_Z51         305398.5         6634555         400         -60         45           OBAC143         AC         34         MGA94_Z51         305335         6634506         400         -60         48           OBAC144         AC         49         MGA94_Z51         30529.2         6634400         400         -60         48           OBAC145         AC         33         MGA94_Z51         30579.5         6634355         400         -60         41.5           OBAC147         AC         31         MGA94_Z51         30579.5         6634957         400         -60         100.5           OBAC147         AC         57         MGA94_Z51         30460.7         6634957         400         -60         191           OBAC150         AC         49         MGA94_Z51         30457.1         6634954         400         -60         92           OBAC151         AC         49         MGA94_Z51         30420.4         6634955         400         -60         92           OBAC152                                                                                                                                       | OBAC139 |    |    | _             | 305579.3 | 6634705 | 400 |     |       |
| OBAC142         AC         27         MGA94_Z51         305398.5         6634555         400         -60         45           OBAC143         AC         34         MGA94_Z51         305335         6634506         400         -60         48           OBAC144         AC         49         MGA94_Z51         305271.1         6634451         400         -60         48           OBAC145         AC         33         MGA94_Z51         305209.2         6634400         400         -60         46           OBAC147         AC         31         MGA94_Z51         305097.5         6634557         400         -60         41.5           OBAC148         AC         46         MGA94_Z51         30460.7         6634957         400         -60         91           OBAC150         AC         49         MGA94_Z51         30445.6         6634954         400         -60         92           OBAC151         AC         49         MGA94_Z51         304317.5         6634956         400         -60         92           OBAC152         AC         46         MGA94_Z51         304178.5         6634954         400         -60         92           OBAC153 </td <td>OBAC140</td> <td></td> <td></td> <td>_</td> <td></td> <td>6634639</td> <td>400</td> <td>-60</td> <td></td>                     | OBAC140 |    |    | _             |          | 6634639 | 400 | -60 |       |
| OBAC143         AC         34         MGA94_Z51         305335         6634506         400         -60         51.5           OBAC144         AC         49         MGA94_Z51         305271.1         6634451         400         -60         48           OBAC145         AC         33         MGA94_Z51         305202.2         6634400         400         -60         46           OBAC146         AC         31         MGA94_Z51         30507.5         6634296         400         -60         41.5           OBAC148         AC         46         MGA94_Z51         30460.7         6634957         400         -60         100.5           OBAC149         AC         57         MGA94_Z51         304572.1         6634951         400         -60         91           OBAC150         AC         49         MGA94_Z51         304431.9         6634955         400         -60         98           OBAC151         AC         49         MGA94_Z51         30426.4         6634955         400         -60         92           OBAC153         AC         61         MGA94_Z51         30426.4         6634955         400         -60         95           OBAC15                                                                                                                                       | OBAC141 | AC | 35 | MGA94_Z51     | 305458.7 | 6634602 | 400 | -60 | 47.5  |
| OBAC144         AC         49         MGA94_Z51         305271.1         6634451         400         -60         48           OBAC145         AC         33         MGA94_Z51         305209.2         6634400         400         -60         52.5           OBAC146         AC         31         MGA94_Z51         305148.7         6634355         400         -60         46           OBAC147         AC         31         MGA94_Z51         30507.5         6634296         400         -60         41.5           OBAC148         AC         46         MGA94_Z51         30460.7         6634957         400         -60         100.5           OBAC150         AC         49         MGA94_Z51         30447.6         6634944         400         -60         91           OBAC151         AC         49         MGA94_Z51         30431.9         6634955         400         -60         98           OBAC152         AC         46         MGA94_Z51         304317.5         6634955         400         -60         92           OBAC153         AC         61         MGA94_Z51         304317.5         6634955         400         -60         95           OBAC                                                                                                                                       | OBAC142 | AC | 27 | MGA94_Z51     | 305398.5 | 6634555 | 400 | -60 | 45    |
| OBAC145         AC         33         MGA94_Z51         305209.2         6634400         400         -60         52.5           OBAC146         AC         31         MGA94_Z51         305148.7         6634355         400         -60         46           OBAC147         AC         31         MGA94_Z51         305097.5         6634296         400         -60         41.5           OBAC148         AC         46         MGA94_Z51         30460.7         6634957         400         -60         100.5           OBAC149         AC         57         MGA94_Z51         304572.1         6634961         400         -60         91           OBAC150         AC         49         MGA94_Z51         30443.5         6634944         400         -60         98           OBAC151         AC         49         MGA94_Z51         304317.5         6634955         400         -60         92           OBAC152         AC         46         MGA94_Z51         304178.5         6634949         400         -60         92           OBAC153         AC         61         MGA94_Z51         30408.2         6634955         400         -60         95           OBA                                                                                                                                       | OBAC143 | AC | 34 | MGA94_Z51     | 305335   | 6634506 | 400 | -60 | 51.5  |
| OBAC146         AC         31         MGA94_Z51         305148.7         6634355         400         -60         46           OBAC147         AC         31         MGA94_Z51         305097.5         6634296         400         -60         41.5           OBAC148         AC         46         MGA94_Z51         30460.7         6634957         400         -60         100.5           OBAC149         AC         57         MGA94_Z51         304572.1         6634961         400         -60         91           OBAC150         AC         49         MGA94_Z51         30449.6         6634944         400         -60         98           OBAC151         AC         49         MGA94_Z51         30431.9         6634955         400         -60         98           OBAC152         AC         46         MGA94_Z51         30417.5         6634955         400         -60         92           OBAC154         AC         75         MGA94_Z51         30408.2         6634955         400         -60         95           OBAC155         AC         63         MGA94_Z51         30408.2         6634955         400         -60         95           OBAC155<                                                                                                                                       | OBAC144 | AC | 49 | MGA94_Z51     | 305271.1 | 6634451 | 400 | -60 | 48    |
| OBAC147         AC         31         MGA94_Z51         305097.5         6634296         400         -60         41.5           OBAC148         AC         46         MGA94_Z51         304660.7         6634957         400         -60         100.5           OBAC149         AC         57         MGA94_Z51         304572.1         6634961         400         -60         91           OBAC150         AC         49         MGA94_Z51         304496.6         6634944         400         -60         91           OBAC151         AC         49         MGA94_Z51         30431.9         6634956         400         -60         98           OBAC152         AC         46         MGA94_Z51         304317.5         6634955         400         -60         92           OBAC153         AC         61         MGA94_Z51         304178.5         6634955         400         -60         92           OBAC155         AC         80         MGA94_Z51         304098.2         6634955         400         -60         92           OBAC156         AC         63         MGA94_Z51         303937.9         6634957         400         -60         92.5           O                                                                                                                                       | OBAC145 | AC | 33 | MGA94_Z51     | 305209.2 | 6634400 | 400 | -60 | 52.5  |
| OBAC148         AC         46         MGA94_Z51         304660.7         6634957         400         -60         100.5           OBAC149         AC         57         MGA94_Z51         304572.1         6634961         400         -60         91           OBAC150         AC         49         MGA94_Z51         304496.6         6634956         400         -60         91           OBAC151         AC         49         MGA94_Z51         304431.9         6634956         400         -60         98           OBAC152         AC         46         MGA94_Z51         304317.5         6634956         400         -60         92           OBAC153         AC         61         MGA94_Z51         304260.4         6634955         400         -60         92           OBAC154         AC         75         MGA94_Z51         30408.2         6634955         400         -60         95           OBAC155         AC         80         MGA94_Z51         30408.2         6634955         400         -60         92.5           OBAC155         AC         63         MGA94_Z51         303937.9         6634957         400         -60         92.5           OB                                                                                                                                       | OBAC146 | AC | 31 | MGA94_Z51     | 305148.7 | 6634355 | 400 | -60 | 46    |
| OBAC149         AC         57         MGA94_Z51         304572.1         6634961         400         -60         76           OBAC150         AC         49         MGA94_Z51         304496.6         6634944         400         -60         91           OBAC151         AC         49         MGA94_Z51         304431.9         6634956         400         -60         98           OBAC152         AC         46         MGA94_Z51         304260.4         6634955         400         -60         92           OBAC153         AC         61         MGA94_Z51         304260.4         6634955         400         -60         92           OBAC154         AC         75         MGA94_Z51         304178.5         6634955         400         -60         95           OBAC155         AC         80         MGA94_Z51         304178.5         6634955         400         -60         95           OBAC156         AC         63         MGA94_Z51         30417.7         6634955         400         -60         92.5           OBAC157         AC         55         MGA94_Z51         30337.9         6635788         400         -60         92.5           OBAC1                                                                                                                                       | OBAC147 | AC | 31 | MGA94_Z51     | 305097.5 | 6634296 | 400 | -60 | 41.5  |
| OBAC150         AC         49         MGA94_Z51         304496.6         6634944         400         -60         91           OBAC151         AC         49         MGA94_Z51         304431.9         6634956         400         -60         98           OBAC152         AC         46         MGA94_Z51         304317.5         6634950         400         -60         92           OBAC153         AC         61         MGA94_Z51         304260.4         6634955         400         -60         92           OBAC154         AC         75         MGA94_Z51         304178.5         6634955         400         -60         95           OBAC155         AC         80         MGA94_Z51         304098.2         6634955         400         -60         95           OBAC156         AC         63         MGA94_Z51         304098.2         6634951         400         -60         92.5           OBAC157         AC         55         MGA94_Z51         30337.9         6634957         400         -60         85           OBAC159         AC         86         MGA94_Z51         303356.9         6635788         400         -60         24           OBAC16                                                                                                                                       | OBAC148 | AC | 46 | MGA94_Z51     | 304660.7 | 6634957 | 400 | -60 | 100.5 |
| OBAC151AC49MGA94_Z51304431.96634956400-6098OBAC152AC46MGA94_Z51304317.56634950400-6079OBAC153AC61MGA94_Z51304260.46634955400-6092OBAC154AC75MGA94_Z51304178.56634949400-6095OBAC155AC80MGA94_Z51304098.26634955400-6095OBAC156AC63MGA94_Z513040076634951400-6096.5OBAC157AC63MGA94_Z51303937.96634957400-6092.5OBAC158AC62MGA94_Z5130385.56634956400-6092.5OBAC159AC86MGA94_Z5130337.96635788400-6029OBAC160AC89MGA94_Z5130337.96635715400-6022.5OBAC161AC89MGA94_Z51303293.66635640400-6022.5OBAC162AC65MGA94_Z5130320.76635489400-6022.5OBAC163AC52MGA94_Z51303198.56635417400-6022.5OBAC164AC19MGA94_Z51303198.56635417400-6022.5OBAC165AC27MGA94_Z513031886635340400-6022.5OBAC165AC <t< td=""><td>OBAC149</td><td>AC</td><td>57</td><td>MGA94_Z51</td><td>304572.1</td><td>6634961</td><td>400</td><td>-60</td><td>76</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | OBAC149 | AC | 57 | MGA94_Z51     | 304572.1 | 6634961 | 400 | -60 | 76    |
| OBAC152AC46MGA94_Z51304317.56634950400-6079OBAC153AC61MGA94_Z51304260.46634955400-6092OBAC154AC75MGA94_Z51304178.56634949400-6095OBAC155AC80MGA94_Z5130408.26634955400-6088OBAC156AC63MGA94_Z5130400.76634951400-6096.5OBAC157AC55MGA94_Z51303937.96634957400-6092.5OBAC158AC62MGA94_Z51303356.96635788400-6085OBAC159AC86MGA94_Z5130337.96635715400-6029OBAC160AC89MGA94_Z5130337.96635715400-6029OBAC161AC89MGA94_Z51303293.66635640400-6022.5OBAC162AC65MGA94_Z5130320.76635745400-6021.5OBAC163AC52MGA94_Z5130318.56635417400-6022.5OBAC164AC19MGA94_Z5130318.5663540400-6022.5OBAC165AC27MGA94_Z5130318.56635417400-6022.5OBAC165AC27MGA94_Z5130318.5663540400-6022.5OBAC165AC27<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OBAC150 | AC | 49 | MGA94_Z51     | 304496.6 | 6634944 | 400 | -60 | 91    |
| OBAC153AC61MGA94_Z51304260.46634955400-6092OBAC154AC75MGA94_Z51304178.56634949400-6095OBAC155AC80MGA94_Z51304098.26634955400-6088OBAC156AC63MGA94_Z51304010.76634951400-6096.5OBAC157AC55MGA94_Z51303937.96634957400-6092.5OBAC158AC62MGA94_Z5130385.56634956400-6085OBAC159AC86MGA94_Z5130337.96635715400-6029OBAC161AC89MGA94_Z51303293.66635640400-6024OBAC162AC65MGA94_Z5130320.76635145400-6022.5OBAC163AC52MGA94_Z51303198.56635417400-6021.5OBAC164AC19MGA94_Z5130318.56635417400-6022.5OBAC165AC21MGA94_Z5130318.56635417400-6022.5OBAC165AC27MGA94_Z51303134.26635265400-6022.5OBAC166AC27MGA94_Z51303198.36635187400-6022.5OBAC165AC27MGA94_Z51303198.3663540400-6022.5OBAC166AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | OBAC151 | AC | 49 | MGA94_Z51     | 304431.9 | 6634956 | 400 | -60 | 98    |
| OBAC154AC75MGA94_Z51304178.56634949400-6095OBAC155AC80MGA94_Z51304098.26634955400-6088OBAC156AC63MGA94_Z51304010.76634951400-6096.5OBAC157AC55MGA94_Z51303937.96634957400-6092.5OBAC158AC62MGA94_Z51303855.56634956400-6085OBAC159AC86MGA94_Z51303356.96635788400-6029OBAC160AC89MGA94_Z5130337.96635715400-6029OBAC161AC89MGA94_Z51303293.66635640400-6024OBAC162AC65MGA94_Z5130320.76635455400-6021.5OBAC163AC52MGA94_Z51303198.56635417400-6022.5OBAC164AC19MGA94_Z51303168663540400-6022.5OBAC165AC21MGA94_Z51303184.26635265400-6022.5OBAC166AC27MGA94_Z51303134.26635265400-6022.5OBAC166AC27MGA94_Z51303198.36635187400-6022.5OBAC166AC27MGA94_Z51303198.36635187400-6022.5OBAC166AC <td>OBAC152</td> <td>AC</td> <td>46</td> <td>MGA94_Z51</td> <td>304317.5</td> <td>6634950</td> <td>400</td> <td>-60</td> <td>79</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OBAC152 | AC | 46 | MGA94_Z51     | 304317.5 | 6634950 | 400 | -60 | 79    |
| OBAC155AC80MGA94_Z51304098.26634955400-6088OBAC156AC63MGA94_Z51304010.76634951400-6096.5OBAC157AC55MGA94_Z51303937.96634957400-6092.5OBAC158AC62MGA94_Z5130385.56634956400-6085OBAC159AC86MGA94_Z51303356.96635788400-6029OBAC160AC89MGA94_Z5130337.96635715400-6029OBAC161AC89MGA94_Z51303293.66635640400-6024OBAC162AC65MGA94_Z51303266.46635565400-6022.5OBAC163AC52MGA94_Z51303198.56635417400-6021.5OBAC164AC19MGA94_Z51303198.56635417400-6022.5OBAC165AC21MGA94_Z51303198.56635417400-6022.5OBAC166AC27MGA94_Z513031866635340400-6022.5OBAC166AC27MGA94_Z51303194.26635265400-6022.5OBAC166AC27MGA94_Z51303194.26635265400-6022.5OBAC166AC27MGA94_Z5130309.36635187400-6022.5OBAC166AC </td <td>OBAC153</td> <td>AC</td> <td>61</td> <td>MGA94_Z51</td> <td>304260.4</td> <td>6634955</td> <td>400</td> <td>-60</td> <td>92</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OBAC153 | AC | 61 | MGA94_Z51     | 304260.4 | 6634955 | 400 | -60 | 92    |
| OBAC156AC63MGA94_Z51304010.76634951400-6096.5OBAC157AC55MGA94_Z51303937.96634957400-6092.5OBAC158AC62MGA94_Z51303855.56634956400-6085OBAC159AC86MGA94_Z51303356.96635788400-6016.5OBAC160AC89MGA94_Z5130337.96635715400-6029OBAC161AC89MGA94_Z51303293.66635640400-6024OBAC162AC65MGA94_Z51303293.66635655400-6022.5OBAC163AC52MGA94_Z5130320.76635489400-6021.5OBAC164AC19MGA94_Z51303198.56635417400-6022.5OBAC165AC21MGA94_Z51303188663540400-6022.5OBAC166AC21MGA94_Z51303198.56635417400-6022.5OBAC166AC27MGA94_Z513031846635265400-6022.5OBAC166AC27MGA94_Z51303134.26635265400-6022.5OBAC167AC40MGA94_Z5130309.36635187400-6022.5OBAC167AC27MGA94_Z5130309.36635187400-6022.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | OBAC154 | AC | 75 | MGA94_Z51     | 304178.5 | 6634949 | 400 | -60 | 95    |
| OBAC157AC55MGA94_Z51303937.96634957400-6092.5OBAC158AC62MGA94_Z51303855.56634956400-6085OBAC159AC86MGA94_Z51303356.96635788400-6016.5OBAC160AC89MGA94_Z5130337.96635715400-6029OBAC161AC89MGA94_Z51303293.66635640400-6024OBAC162AC65MGA94_Z51303266.46635655400-6022.5OBAC163AC52MGA94_Z5130320.76635489400-6021.5OBAC164AC19MGA94_Z51303198.56635417400-6022.5OBAC165AC21MGA94_Z513031686635340400-6022.5OBAC166AC27MGA94_Z51303198.56635417400-6022.5OBAC167AC40MGA94_Z51303198.56635405400-6022.5OBAC167AC40MGA94_Z51303198.56635265400-6019.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OBAC155 | AC | 80 | MGA94_Z51     | 304098.2 | 6634955 | 400 | -60 | 88    |
| OBAC158AC62MGA94_Z51303855.56634956400-6085OBAC159AC86MGA94_Z51303356.96635788400-6016.5OBAC160AC89MGA94_Z5130337.96635715400-6029OBAC161AC89MGA94_Z51303293.66635640400-6024OBAC162AC65MGA94_Z51303266.46635565400-6022.5OBAC163AC52MGA94_Z51303198.56635417400-6029OBAC164AC19MGA94_Z513031686635340400-6022.5OBAC165AC21MGA94_Z513031686635340400-6022.5OBAC166AC27MGA94_Z51303134.26635265400-6022.5OBAC167AC40MGA94_Z51303099.36635187400-6022.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OBAC156 | AC | 63 | MGA94_Z51     | 304010.7 | 6634951 | 400 | -60 | 96.5  |
| OBAC159AC86MGA94_Z51303356.96635788400-6016.5OBAC160AC89MGA94_Z51303337.96635715400-6029OBAC161AC89MGA94_Z51303293.66635640400-6024OBAC162AC65MGA94_Z51303266.46635565400-6022.5OBAC163AC52MGA94_Z51303230.76635489400-6021.5OBAC164AC19MGA94_Z51303198.56635417400-6029OBAC165AC21MGA94_Z513031686635340400-6022.5OBAC166AC27MGA94_Z51303134.26635265400-6019.5OBAC167AC40MGA94_Z51303099.36635187400-6022.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OBAC157 | AC | 55 | MGA94_Z51     | 303937.9 | 6634957 | 400 | -60 | 92.5  |
| OBAC160AC89MGA94_Z51303337.96635715400-6029OBAC161AC89MGA94_Z51303293.66635640400-6024OBAC162AC65MGA94_Z51303266.46635565400-6022.5OBAC163AC52MGA94_Z51303230.76635489400-6021.5OBAC164AC19MGA94_Z51303198.56635417400-6029OBAC165AC21MGA94_Z513031686635340400-6022.5OBAC166AC27MGA94_Z51303134.26635265400-6019.5OBAC167AC40MGA94_Z51303099.36635187400-6022.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OBAC158 | AC | 62 | MGA94_Z51     | 303855.5 | 6634956 | 400 | -60 | 85    |
| OBAC161AC89MGA94_Z51303293.66635640400-6024OBAC162AC65MGA94_Z51303266.46635565400-6022.5OBAC163AC52MGA94_Z51303230.76635489400-6021.5OBAC164AC19MGA94_Z51303198.56635417400-6029OBAC165AC21MGA94_Z513031686635340400-6022.5OBAC166AC27MGA94_Z51303134.26635265400-6019.5OBAC167AC40MGA94_Z51303099.36635187400-6022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OBAC159 | AC | 86 | MGA94_Z51     | 303356.9 | 6635788 | 400 | -60 | 16.5  |
| OBAC162         AC         65         MGA94_Z51         303266.4         6635565         400         -60         22.5           OBAC163         AC         52         MGA94_Z51         303230.7         6635489         400         -60         21.5           OBAC164         AC         19         MGA94_Z51         303198.5         6635417         400         -60         29           OBAC165         AC         21         MGA94_Z51         303168         6635340         400         -60         22.5           OBAC165         AC         21         MGA94_Z51         303168         6635340         400         -60         22.5           OBAC166         AC         27         MGA94_Z51         303198.5         6635265         400         -60         19.5           OBAC167         AC         40         MGA94_Z51         303099.3         6635187         400         -60         22.5                                                                                                                                                                                                                                                                                                                                                                                                             | OBAC160 | AC | 89 | MGA94_Z51     | 303337.9 | 6635715 | 400 | -60 | 29    |
| OBAC163         AC         52         MGA94_Z51         303230.7         6635489         400         -60         21.5           OBAC164         AC         19         MGA94_Z51         303198.5         6635417         400         -60         29           OBAC165         AC         21         MGA94_Z51         303168         6635340         400         -60         22.5           OBAC166         AC         27         MGA94_Z51         303134.2         6635265         400         -60         19.5           OBAC167         AC         40         MGA94_Z51         303099.3         6635187         400         -60         22.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OBAC161 | AC | 89 | MGA94_Z51     | 303293.6 | 6635640 | 400 | -60 | 24    |
| OBAC164         AC         19         MGA94_Z51         303198.5         6635417         400         -60         29           OBAC165         AC         21         MGA94_Z51         303168         6635340         400         -60         22.5           OBAC166         AC         27         MGA94_Z51         303134.2         6635265         400         -60         19.5           OBAC167         AC         40         MGA94_Z51         303099.3         6635187         400         -60         22.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OBAC162 | AC | 65 | MGA94_Z51     | 303266.4 | 6635565 | 400 | -60 | 22.5  |
| OBAC165         AC         21         MGA94_Z51         303168         6635340         400         -60         22.5           OBAC166         AC         27         MGA94_Z51         303134.2         6635265         400         -60         19.5           OBAC167         AC         40         MGA94_Z51         303099.3         6635187         400         -60         22.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OBAC163 | AC | 52 | MGA94_Z51     | 303230.7 | 6635489 | 400 | -60 | 21.5  |
| OBAC166         AC         27         MGA94_Z51         303134.2         6635265         400         -60         19.5           OBAC167         AC         40         MGA94_Z51         303099.3         6635187         400         -60         22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OBAC164 | AC | 19 | MGA94_Z51     | 303198.5 | 6635417 | 400 | -60 | 29    |
| OBAC166         AC         27         MGA94_Z51         303134.2         6635265         400         -60         19.5           OBAC167         AC         40         MGA94_Z51         303099.3         6635187         400         -60         22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OBAC165 | AC | 21 | MGA94_Z51     | 303168   | 6635340 | 400 | -60 | 22.5  |
| OBAC167 AC 40 MGA94_Z51 303099.3 6635187 400 -60 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | AC |    | _             |          | 6635265 | 400 | -60 |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | AC | 40 | _             | 303099.3 | 6635187 | 400 | -60 | 22    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OBAC168 |    |    | <br>MGA94_Z51 | 303074.6 | 6635114 |     |     |       |

#### APPENDIX 1 – REPORTING OF EXPLORATION RESULTS - JORC (2012) TABLE 1 ORA BANDA SOUTH GOLD PROJECT Section 1: Sampling Techniques and Data

| Criteria                 | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling techniques      | <ul> <li>Nature and quality of sampling<br/>(eg cut channels, random chips,<br/>or specific specialised industry<br/>standard measurement tools<br/>appropriate to the minerals<br/>under investigation, such as<br/>down hole gamma sondes, or<br/>handheld XRF instruments, etc).<br/>These examples should not be<br/>taken as limiting the broad<br/>meaning of sampling.</li> <li>Include reference to measures<br/>taken to ensure sample<br/>representivity and the<br/>appropriate calibration of any<br/>measurement tools or systems<br/>used.</li> <li>Aspects of the determination of<br/>mineralisation that are Material<br/>to the Public Report. In cases<br/>where 'industry standard' work<br/>has been done this would be<br/>relatively simple (eg 'reverse<br/>circulation drilling was used to<br/>obtain 1 m samples from which 3<br/>kg was pulverised to produce a<br/>30 g charge for fire assay'). In<br/>other cases more explanation<br/>may be required, such as where<br/>there is coarse gold that has<br/>inherent sampling problems.<br/>Unusual commodities or<br/>mineralisation types (eg<br/>submarine nodules) may warrant<br/>disclosure of detailed<br/>information.</li> </ul> | <ul> <li>An Aircore rig was supplied by Prospect Drilling.</li> <li>Aircore drilling was used to obtain 1m samples and 4m composites. 4m composites were submitted to the laboratory for analysis.</li> <li>1m bottom of hole samples were collected for multi element analysis.</li> <li>Samples submitted for analysis weighed approx. 3kg.</li> <li>Sampling and analytical procedures detailed in the subsampling techniques and sample preparation section.</li> </ul> |
| Drilling techniques      | <ul> <li>Drill type (eg core, reverse<br/>circulation, open-hole hammer,<br/>rotary air blast, auger, Bangka,<br/>sonic, etc) and details (eg core<br/>diameter, triple or standard tube,<br/>depth of diamond tails, face-<br/>sampling bit or other type,<br/>whether core is oriented and if<br/>so, by what method, etc).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>Face sampling aircore drilling<br/>achieved hole diameter size of (3<br/>1/4 inch).</li> <li>Holes were drilled at an angle of<br/>60 degrees.</li> </ul>                                                                                                                                                                                                                                                                                                          |
| Drill sample<br>recovery | <ul> <li>Method of recording and<br/>assessing core and chip sample<br/>recoveries and results assessed.</li> <li>Measures taken to maximise<br/>sample recovery and ensure<br/>representative nature of the<br/>samples.</li> <li>Whether a relationship exists<br/>between sample recovery and<br/>grade and whether sample bias<br/>may have occurred due to<br/>preferential loss/gain of<br/>fine/coarse material.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>Sample recovery size and<br/>sample conditions (dry, wet,<br/>moist) were recorded.</li> <li>Drilling with care (e.g. clearing<br/>hole at start of rod, regular<br/>cyclone cleaning) if water<br/>encountered, to reduce incidence<br/>of wet samples.</li> </ul>                                                                                                                                                                                                |
| Logging                  | Whether core and chip samples     have been geologically and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>Logging carried by inspection of<br/>washed cuttings at time of drilling</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                |

| Criteria                                             | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                      | <ul> <li>geotechnically logged to a level<br/>of detail to support appropriate<br/>Mineral Resource estimation,<br/>mining studies and metallurgical<br/>studies.</li> <li>Whether logging is qualitative or<br/>quantitative in nature. Core (or<br/>costean, channel, etc)<br/>photography.</li> <li>The total length and percentage<br/>of the relevant intersections</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                   | with all samples collected in<br>plastic chip trays for future<br>reference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sub-sampling<br>techniques and<br>sample preparation | <ul> <li>logged.</li> <li>If core, whether cut or sawn and<br/>whether quarter, half or all core<br/>taken.</li> <li>If non-core, whether riffled, tube<br/>sampled, rotary split, etc and<br/>whether sampled wet or dry.</li> <li>For all sample types, the nature,<br/>quality and appropriateness of<br/>the sample preparation<br/>technique.</li> <li>Quality control procedures<br/>adopted for all sub-sampling<br/>stages to maximise<br/>representivity of samples.</li> <li>Measures taken to ensure that<br/>the sampling is representative of<br/>the in situ material collected,<br/>including for instance results for<br/>field duplicate/second-half<br/>sampling.</li> <li>Whether sample sizes are<br/>appropriate to the grain size of<br/>the material being sampled.</li> </ul> | <ul> <li>4m composite samples were collected from pre-numbered calico bags. Samples weighed between 2.5 - 3 kg. 4m composite samples bagged in polyweave bags for dispatch to assay laboratory.</li> <li>Samples are dried (nominal 110 degrees C), crushed and pulverized to produce a homogenous representative subsample for analysis. All samples are pulverised utilising ALS preparation techniques PUL-23. A grind quality target of 85% passing 75µm has been established and is relative to sample size, type and hardness.</li> <li>The sample size and sample preparation prior to analysis are considered to be appropriate for the expected mineralisation.</li> </ul>                                                                                                                                                                                     |
| Quality of assay<br>data and laboratory<br>tests     | <ul> <li>The nature, quality and<br/>appropriateness of the assaying<br/>and laboratory procedures used<br/>and whether the technique is<br/>considered partial or total.</li> <li>For geophysical tools,<br/>spectrometers, handheld XRF<br/>instruments, etc, the parameters<br/>used in determining the analysis<br/>including instrument make and<br/>model, reading times,<br/>calibrations factors applied and<br/>their derivation, etc.</li> <li>Nature of quality control<br/>procedures adopted (eg<br/>standards, blanks, duplicates,<br/>external laboratory checks) and<br/>whether acceptable levels of<br/>accuracy (ie lack of bias) and<br/>precision have been established.</li> </ul>                                                                                              | <ul> <li>The composite samples were collected at ALS, Kalgoorlie. The samples were transported to the ALS facility in Perth by courier. Following the sample preparation outlined in the previous section above, all samples were analysed by ALS using 4-Acid Digest &amp; Assay [ME-ICP61] plus a specific assay for Gold [Au-ICP21] by ALS laboratories in Perth.</li> <li>1m bottom of hole samples were collected and analysed by ME-MS61 and Au ICP-21 by ALS laboratories.</li> <li>Gold intercepts are calculated with a 0.20g/t Au lower cut, no upper cut and 2m of internal dilution.</li> <li>Intercepts were also calculated from assays with a 0.5g/t lower cut, no upper cut and no internal dilution</li> <li>In addition to the Quality Control process and internal laboratory checks Carnavale inserted standards and blanks at a rate of</li> </ul> |

| Criteria                                                      | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                          | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 to 20 samples. Standards were<br>selected based on oxidation and<br>grade relevant to the expected<br>mineralisation. This process of<br>QA/QC demonstrated acceptable<br>levels of accuracy.                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Verification of<br>sampling and<br>assaying                   | <ul> <li>The verification of significant<br/>intersections by either<br/>independent or alternative<br/>company personnel.</li> <li>The use of twinned holes.</li> <li>Documentation of primary data,<br/>data entry procedures, data<br/>verification, data storage<br/>(physical and electronic)<br/>protocols.</li> <li>Discuss any adjustment to assay<br/>data.</li> </ul>                                                                | <ul> <li>A review of the assay data against the logged information by the field technician and geologist has been completed to verify intercepts.</li> <li>Internal laboratory standards are completed as a matter of course as well as introduced blind standards/CRM by the Company.</li> <li>Sample data was captured in the field and data entry completed. Sample data was then loaded into the Company's database and validation checks completed to ensure data accuracy.</li> <li>No twinned holes have been completed at this stage</li> <li>No adjustments have been made to the assay data.</li> </ul> |
| Location of data<br>points                                    | <ul> <li>Accuracy and quality of surveys<br/>used to locate drill holes (collar<br/>and down-hole surveys),<br/>trenches, mine workings and<br/>other locations used in Mineral<br/>Resource estimation.</li> <li>Specification of the grid system<br/>used.</li> <li>Quality and adequacy of<br/>topographic control.</li> </ul>                                                                                                              | <ul> <li>Drill holes were surveyed by<br/>handheld GPS with horizontal<br/>accuracy (Easting and Northing<br/>values) of +-5m.</li> <li>Grid System – MGA94 Zone 51.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Data spacing and<br>distribution                              | <ul> <li>Data spacing for reporting of<br/>Exploration Results.</li> <li>Whether the data spacing and<br/>distribution is sufficient to<br/>establish the degree of<br/>geological and grade continuity<br/>appropriate for the Mineral<br/>Resource and Ore Reserve<br/>estimation procedure(s) and<br/>classifications applied.</li> <li>Whether sample compositing<br/>has been applied.</li> </ul>                                         | Holes were 80m spaced along<br>southeast-northwest drill<br>traverses to follow-up surface<br>gold geochemistry anomalies and<br>historical aircore drillholes.                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Orientation of data in<br>relation to geological<br>structure | <ul> <li>Whether the orientation of<br/>sampling achieves unbiased<br/>sampling of possible structures<br/>and the extent to which this is<br/>known, considering the deposit<br/>type.</li> <li>If the relationship between the<br/>drilling orientation and the<br/>orientation of key mineralised<br/>structures is considered to have<br/>introduced a sampling bias, this<br/>should be assessed and<br/>reported if material.</li> </ul> | <ul> <li>East west orientated traverses<br/>designed to test for north-west<br/>trending structures.</li> <li>Traverses orientated at a high<br/>angle to the broadly north<br/>westerly trending interpreted<br/>stratigraphic contacts and surface<br/>geochemical anomaly.</li> <li>Insufficient data to determine<br/>orientation of mineralised<br/>structures.</li> </ul>                                                                                                                                                                                                                                   |
| Sample security                                               | The measures taken to ensure sample security.                                                                                                                                                                                                                                                                                                                                                                                                  | Samples were securely stored in<br>the field and transported to the<br>laboratory by an authorised                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Criteria          | JORC Code Explanation                                       | Commentary                                                                                                             |
|-------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Audits or reviews | The results of any audits or reviews of sampling techniques | <ul> <li>company representative or an authorised transport agency.</li> <li>No audits or reviews completed.</li> </ul> |
|                   | and data.                                                   |                                                                                                                        |

#### Section 2: Reporting of Exploration Results – ORA BANDA SOUTH GOLD PROJECT

| Criteria                                      | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral tenement<br>and land tenure<br>status | <ul> <li>Type, reference name/number,<br/>location and ownership including<br/>agreements or material issues<br/>with third parties such as joint<br/>ventures, partnerships,<br/>overriding royalties, native title<br/>interests, historical sites,<br/>wilderness or national park and<br/>environmental settings.</li> <li>The security of the tenure held<br/>at the time of reporting along<br/>with any known impediments to<br/>obtaining a licence to operate in<br/>the area.</li> </ul> | <ul> <li>The Southern Tenement package of the Ora Banda South Gold Project includes five granted prospecting licences (P16/3000, P16/3001, P16/3077, P16/3081, P16/3082) and is owned by Western Resources Pty Ltd. Carnavale Resources Ltd has a 2 year option to purchase 80% of the tenements.</li> <li>There is no Native Title Claim registered in respect of the project tenure.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Exploration done by other parties             | Acknowledgment and appraisal<br>of exploration by other parties.                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>In the early 1990's Finders Gold<br/>NL completed an auger soil<br/>sampling program over an area<br/>now covered by the southern two<br/>prospecting licences (P16/2545 –<br/>2546). This program outlined a<br/>distinct NW-SE trending gold<br/>anomaly in the western portion of<br/>the tenement block.</li> <li>In the mid 1990's Merritt Mining<br/>NL completed an exploration<br/>program over an area now<br/>covered by the northern most<br/>three prospecting licences<br/>(P16/2567 – 2569). Exploration<br/>comprised gridding, geochemical<br/>soil sampling, interpretation of<br/>aeromagnetic data and<br/>reconnaissance RAB drilling. The<br/>soil sampling outlined a NW<br/>trending gold anomaly contiguous<br/>with the drilling terminated in a highly<br/>weathered part of the profile<br/>which was potentially gold<br/>depleted.</li> <li>The two historical soil<br/>geochemistry programs together<br/>delineated a distinct zone of<br/>anomalous gold geochemistry<br/>within the western portion of the<br/>current project area. The gold<br/>anomaly (&gt;10ppb Au, peak<br/>S4ppb Au) trends north westerly<br/>over a strike length in excess of<br/>4km and broadly parallels the</li> </ul> |

| Criteria | JORC Code Explanation | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                       | <ul> <li>interpreted regional lithological trends.</li> <li>Several kilometres of strike of the gold in soil anomaly remained untested by drilling and represented a high priority drill target.</li> <li>Carrick Gold investigated the soil geochemical anomalies (during the period 2009 – 2012) with a program of 31 aircore drill holes (KWAC 035-065) on wide spaced traverses across the southern most part of the surface geochemical anomaly on P16/2545-2546. The holes were drilled along three separate eastwest traverses. The traverses were spaced between 520m and 640m apart, with holes spaced between 80m and 160m apart along the traverses. This first pass wide spaced program successfully returned significant gold results KWAC055 and KWAC056 which tested the southern part of the historical gold soil anomaly. These holes returned the following intersections:</li> <li>KWAC 055 – 5m @ 2.25/t from 116m down hole (at end of hole). This intersection was associated with a strongly foliated, intense carbonate-silica altered, quartz sulphide veined felsic volcanic /volcaniclastic.</li> <li>The significant intercepts from the aircore program were followed by a program of 4 RC holes. These holes were followed by a program of 4 RC holes. These holes were followed by a program of 4 RC holes. These holes were followed a test of the gold mineralised structure intersected in the aircore drilling.</li> <li>During the period 2013 – 2014 Phoenix Gold Ltd completed a review of previous exploration, geological due diligence, database updates, geological research and 3D Common Earth Modelling.</li> <li>In 2015 Siburan Resources Ltd entered into an option agreement with Western Resources Pty Ltd. Siburan Resources Ltd completed one diamond hole and</li> </ul> |
|          |                       | 21 aircore holes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| Criteria                                                                  | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Commentary                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                           | and style of mineralisation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mineralisation associated<br>mineralised structures with the<br>Black Flag Group sediments.                                                                                                                                       |
| Drill hole<br>Information                                                 | <ul> <li>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:</li> <li>easting and northing of the drill hole collar</li> <li>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</li> <li>dip and azimuth of the hole</li> <li>down hole length and interception depth</li> <li>hole length.</li> <li>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</li> </ul> | Drill hole locations are shown on<br>the plan attached in this release<br>and in the Appendices.                                                                                                                                  |
| Data aggregation<br>methods                                               | <ul> <li>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</li> <li>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</li> <li>The assumptions used for any reporting of metal equivalent values should be clearly stated.</li> </ul>                                                                                                                                   | <ul> <li>Intercepts are reported as downhole length and average gold intercept are calculated with a 0.1g/t Au lower cut, no upper cut and no internal dilution.</li> <li>No metal equivalent values or formulas used.</li> </ul> |
| Relationship<br>between<br>mineralisation widths<br>and intercept lengths | <ul> <li>These relationships are particularly important in the reporting of Exploration Results.</li> <li>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</li> <li>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</li> </ul>                                                                                                                                                                                                                                                                                                               | All results are based on whole<br>down-hole metres. True width not<br>known.                                                                                                                                                      |
| Diagrams                                                                  | Appropriate maps and sections<br>(with scales) and tabulations of<br>intercepts should be included for<br>any significant discovery being<br>reported. These should include,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Appropriate summary diagrams<br>with Scale and MGA 94<br>coordinates are included in the<br>accompanying text above.                                                                                                              |

| Criteria                              | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                         | Commentary                                                                                                                                                                            |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       | but not be limited to a plan view<br>of drill hole collar locations and<br>appropriate sectional views.                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                       |
| Balanced reporting                    | <ul> <li>Where comprehensive reporting<br/>of all Exploration Results is not<br/>practicable, representative<br/>reporting of both low and high<br/>grades and/or widths should be<br/>practiced to avoid misleading<br/>reporting of Exploration Results.</li> </ul>                                                                                                                                                                                         | Diagrams show all drill holes completed.                                                                                                                                              |
| Other substantive<br>exploration data | <ul> <li>Other exploration data, if<br/>meaningful and material, should<br/>be reported including (but not<br/>limited to): geological<br/>observations; geophysical<br/>survey results; geochemical<br/>survey results; bulk samples –<br/>size and method of treatment;<br/>metallurgical test results; bulk<br/>density, groundwater,<br/>geotechnical and rock<br/>characteristics; potential<br/>deleterious or contaminating<br/>substances.</li> </ul> | Historical soil sampling programs<br>have defined a NW trending gold<br>anomaly which is broadly<br>coincident with the interpreted<br>trends of the local stratigraphic<br>contacts. |
| Further work                          | <ul> <li>The nature and scale of planned<br/>further work (eg tests for lateral<br/>extensions or depth extensions<br/>or large-scale step-out drilling).</li> <li>Diagrams clearly highlighting the<br/>areas of possible extensions,<br/>including the main geological<br/>interpretations and future drilling<br/>areas, provided this information<br/>is not commercially sensitive.</li> </ul>                                                           | Planning has commenced on a<br>drilling program to infill the<br>geochemical anomalies identified<br>by this aircore drilling.                                                        |